Skip to main content

Strong Coupling of Diffraction Coupled Plasmons and Optical Waveguide Modes in Gold Stripe-Dielectric Nanostructures at Telecom Wavelengths

  • Chapter
  • First Online:
Narrow Plasmon Resonances in Hybrid Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 354 Accesses

Abstract

We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.I. Bozhevolnyi, Plasmonic Nano-Guides and Circuits (Pan Stanford, 2008)

    Google Scholar 

  2. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  3. R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma, Geometries and materials for subwavelength surface plasmon modes. JOSA A 21(12), 2442–2446 (2004)

    Article  ADS  Google Scholar 

  4. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, S.I. Bozhevolnyi, Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23(1), 413 (2005)

    Article  ADS  Google Scholar 

  5. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(4), 046802 (2005)

    Article  ADS  Google Scholar 

  6. E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martín-Moreno, F.J. Garcia-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100(2), 023901 (2008)

    Article  ADS  Google Scholar 

  7. D. Ansell, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, A.N. Grigorenko, Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6 (2015)

    Google Scholar 

  8. O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11(7), 573–584 (2012)

    Article  ADS  Google Scholar 

  9. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)

    Article  ADS  Google Scholar 

  10. V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)

    Google Scholar 

  11. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  12. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844–846 (2000)

    Article  ADS  Google Scholar 

  13. P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61(15), 10484 (2000)

    Article  ADS  Google Scholar 

  14. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Article  Google Scholar 

  15. F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A Pure Appl. Opt. 7(2), S97 (2005)

    Article  ADS  Google Scholar 

  16. G. Kumar, S. Li, M.M. Jadidi, T.E. Murphy, Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J. Phys. 15(8), 085031 (2013)

    Article  ADS  Google Scholar 

  17. A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, H. Giessen, Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91(18), 183901 (2003)

    Article  ADS  Google Scholar 

  18. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, Omnidirectional absorption enhancement in hybrid waveguide-plasmon system. Appl. Phys. Lett. 98(26), 261101 (2011)

    Article  ADS  Google Scholar 

  19. V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)

    Article  ADS  Google Scholar 

  20. V.G. Kravets, F. Schedin, G. Pisano, B. Thackray, P.A. Thomas, A.N. Grigorenko, Nanoparticle arrays: from magnetic response to coupled plasmon resonances. Phys. Rev. B 90(12), 125445 (2014)

    Article  ADS  Google Scholar 

  21. L. Rayleigh, On the dynamical theory of gratings. Proc. Roy. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907)

    Google Scholar 

  22. J. Jose, F.B. Segerink, J.P. Korterik, A. Gomez-Casado, J. Huskens, J.L. Herek, H.L. Offerhaus, Enhanced surface plasmon polariton propagation length using a buried metal grating. J. Appl. Phys. 109(6), 064906 (2011)

    Article  ADS  Google Scholar 

  23. J. Zhang, L. Cai, W. Bai, G. Song, Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt. Lett. 35(20), 3408–3410 (2010)

    Article  ADS  Google Scholar 

  24. I.P. Kaminow, W.L. Mammel, H.P. Weber, Metal-clad optical waveguides: analytical and experimental study. Appl. Opt. 13(2), 396–405 (1974)

    Article  ADS  Google Scholar 

  25. S.C. Rashleigh, Four-layer metal-clad thin film optical waveguides. Opt. Quantum Electron. 8(1), 49–60 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, P.A. (2018). Strong Coupling of Diffraction Coupled Plasmons and Optical Waveguide Modes in Gold Stripe-Dielectric Nanostructures at Telecom Wavelengths. In: Narrow Plasmon Resonances in Hybrid Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97526-9_6

Download citation

Publish with us

Policies and ethics