Advertisement

Strong Coupling of Diffraction Coupled Plasmons and Optical Waveguide Modes in Gold Stripe-Dielectric Nanostructures at Telecom Wavelengths

  • Philip A. ThomasEmail author
Chapter
  • 223 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied.

References

  1. 1.
    S.I. Bozhevolnyi, Plasmonic Nano-Guides and Circuits (Pan Stanford, 2008)Google Scholar
  2. 2.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma, Geometries and materials for subwavelength surface plasmon modes. JOSA A 21(12), 2442–2446 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, S.I. Bozhevolnyi, Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23(1), 413 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(4), 046802 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martín-Moreno, F.J. Garcia-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100(2), 023901 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ansell, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, A.N. Grigorenko, Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6 (2015)Google Scholar
  8. 8.
    O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11(7), 573–584 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)Google Scholar
  11. 11.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  12. 12.
    R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844–846 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61(15), 10484 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)CrossRefGoogle Scholar
  15. 15.
    F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A Pure Appl. Opt. 7(2), S97 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    G. Kumar, S. Li, M.M. Jadidi, T.E. Murphy, Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J. Phys. 15(8), 085031 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, H. Giessen, Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91(18), 183901 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, Omnidirectional absorption enhancement in hybrid waveguide-plasmon system. Appl. Phys. Lett. 98(26), 261101 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    V.G. Kravets, F. Schedin, G. Pisano, B. Thackray, P.A. Thomas, A.N. Grigorenko, Nanoparticle arrays: from magnetic response to coupled plasmon resonances. Phys. Rev. B 90(12), 125445 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L. Rayleigh, On the dynamical theory of gratings. Proc. Roy. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907)Google Scholar
  22. 22.
    J. Jose, F.B. Segerink, J.P. Korterik, A. Gomez-Casado, J. Huskens, J.L. Herek, H.L. Offerhaus, Enhanced surface plasmon polariton propagation length using a buried metal grating. J. Appl. Phys. 109(6), 064906 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhang, L. Cai, W. Bai, G. Song, Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt. Lett. 35(20), 3408–3410 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    I.P. Kaminow, W.L. Mammel, H.P. Weber, Metal-clad optical waveguides: analytical and experimental study. Appl. Opt. 13(2), 396–405 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    S.C. Rashleigh, Four-layer metal-clad thin film optical waveguides. Opt. Quantum Electron. 8(1), 49–60 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations