Advertisement

Nanomechanical Electro-Optical Modulator Based on Atomic Heterostructures

  • Philip A. ThomasEmail author
Chapter
  • 250 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Two-dimensional atomic heterostructures combined with metallic nanostructures allow one to realize strong light–matter interactions. Metallic nanostructures possess plasmonic resonances that can be modulated by graphene gating. In particular, spectrally narrow plasmon resonances potentially allow for very high graphene-enabled modulation depth.

Keywords

Graphic Gating Modulation Depth Narrow Plasmon Resonances Rigorous Coupled-wave Analysis (RCWA) Nanostrips 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120(23), 10871–10875 (2004)Google Scholar
  8. 8.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12(4), 304–309 (2013)Google Scholar
  10. 10.
    F.J. García de Abajo, Graphene nanophotonics. Science 339(6122), 917–918 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11(8), 3370–3377 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F.J. García de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405), 77–81 (2012)Google Scholar
  14. 14.
    A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.N. Castro Neto, K.S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013)Google Scholar
  17. 17.
    T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    F. Schedin, E. Lidorikis, A. Lombardo, V.G. Kravets, A.K. Geim, A.N. Grigorenko, K.S. Novoselov, A.C. Ferrari, Surface-enhanced raman spectroscopy of graphene. ACS Nano 4(10), 5617–5626 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630–634 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J. Kim, H. Son, D.J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.R. Shen, F. Wang, Electrical control of optical plasmon resonance with graphene. Nano Lett. 12(11), 5598–5602 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Yao, M.A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett. 14(1), 214–219 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    D. Ansell, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, A.N. Grigorenko, Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6 (2015)Google Scholar
  23. 23.
    B.S. Dennis, M.I. Haftel, D.A. Czaplewski, D. Lopez, G. Blumberg, V.A. Aksyuk, Compact nanomechanical plasmonic phase modulators. Nat. Photonics 9(4), 267–273 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Reserbat-Plantey, K.G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, F.H.L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene nems. Nat. Commun. 7 (2016)Google Scholar
  25. 25.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Inman. Engineering Vibration, 4th edn. (Pearson, 2014)Google Scholar
  27. 27.
    Y.-N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44(15), 7787 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    M. Bordag, I.V. Fialkovsky, D.M. Gitman, D.V. Vassilevich, Casimir interaction between a perfect conductor and graphene described by the dirac model. Phys. Rev. B 80(24), 245406 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M. Wraback, H. Shen, S. Liang, C.R. Gorla, Y. Lu, High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire. Appl. Phys. Lett. 74(4), 507–509 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    A.E. Oberhofer, J.F. Muth, M.A.L. Johnson, Z.Y. Chen, E.F. Fleet, G.D. Cooper, Planar gallium nitride ultraviolet optical modulator. Appl. Phys. Lett. 83(14), 2748–2750 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    R. Thijssen, E. Verhagen, T.J. Kippenberg, A. Polman, Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13(7), 3293–3297 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    N. Youngblood, Y. Anugrah, R. Ma, S.J. Koester, M. Li, Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14(5), 2741–2746 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y. Ron Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14(2), 955–959 (2014)Google Scholar
  34. 34.
    J.P. Hugonin, P. Lalanne, Reticolo Software for Grating Analysis (2005)Google Scholar
  35. 35.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA A 3(11), 1780–1787 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    J.D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T.L. Reinecke, S.A. Maier, O.J. Glembocki, Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4(1), 44–68 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Dabidian, I. Kholmanov, A.B. Khanikaev, K. Tatar, S. Trendafilov, S.H. Mousavi, C. Magnuson, R.S. Ruoff, G. Shvets, Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces. ACS Photonics 2(2), 216–227 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Yao, M.A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, F. Capasso, Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13(3), 1257–1264 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    D.J. Griffiths, Introduction to Electrodynamics (1999)Google Scholar
  40. 40.
    G. Kern, G. Kresse, J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 59(13), 8551 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations