Super-Narrow, Extremely High Quality Collective Plasmon Resonances at Telecommunication Wavelengths

  • Philip A. ThomasEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we describe the theory, fabrication and characterisation of gold nanostripe arrays on a thin gold film, with the spectral line full width at half-maximum (FWHM) as low as 5 nm and quality factors Q reaching 300, at important fibre-optic telecommunication wavelengths around 1.5 \(\upmu \)m.


Narrow Plasmon Resonances Full Width At Half Maximum (FWHM) Nanostrips Coupled Dipole Approximation Diffraction Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.D. Thackray, Coupling of localised plasmon resonances. Ph.D. thesis, The University of Manchester, Manchester, UK, 2014Google Scholar
  2. 2.
    B.D. Thackray, P.A. Thomas, G.H. Auton, F.J. Rodriguez, O.P. Marshall, V.G. Kravets, A.N. Grigorenko, Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett. 15(5), 3519–3523 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)Google Scholar
  5. 5.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12(4), 304–309 (2013)Google Scholar
  6. 6.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)Google Scholar
  7. 7.
    J. Kim, H. Son, D.J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.R. Shen, F. Wang, Electrical control of optical plasmon resonance with graphene. Nano Lett. 12(11), 5598–5602 (2012)Google Scholar
  8. 8.
    S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120(23), 10871–10875 (2004)Google Scholar
  9. 9.
    V.A. Markel, Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B Atomic Mol. Optical Phys. 38(7), L115 (2005)Google Scholar
  10. 10.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)Google Scholar
  11. 11.
    B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902 (2008)Google Scholar
  12. 12.
    L. Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 79(532), 399–416 (1907)Google Scholar
  13. 13.
    S.-Q. Li, W. Zhou, D. Bruce Buchholz, J.B. Ketterson, L.E. Ocola, K. Sakoda, R.P.H. Chang, Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Appl. Phys. Lett. 104(23), 231101 (2014)Google Scholar
  14. 14.
    F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97(20), 206806 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111(6), 3913–3961 (2011)CrossRefGoogle Scholar
  17. 17.
    A.L. Koh, K. Bao, I. Khan, W.E. Smith, G. Kothleitner, P. Nordlander, S.A. Maier, D.W. McComb, Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3(10), 3015–3022 (2009)CrossRefGoogle Scholar
  18. 18.
    V.A. Markel, Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure. J. Mod. Optics 40(11), 2281–2291 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    S. Zou, G.C. Schatz, Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17(11), 2813 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    H. DeVoe, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys. 41(2), 393–400 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    H. DeVoe, Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J. Chem. Phys. 43(9), 3199–3208 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    E.M. Purcell, C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    F.J. García De Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79(4), 1267 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photon. 1(11), 1116–1126 (2014)Google Scholar
  25. 25.
    C.L. Haynes, A.D. McFarland, L. Zhao, R.P. Van Duyne, G.C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107(30), 7337–7342 (2003)CrossRefGoogle Scholar
  26. 26.
    E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Käll, Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5(6), 1065–1070 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    J. Sung, E.M. Hicks, R.P. Van Duyne, K.G. Spears, Nanoparticle spectroscopy: plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles. J. Phys. Chem. C 112(11), 4091–4096 (2008)CrossRefGoogle Scholar
  28. 28.
    B. Auguié, X.M. Bendana, W.L. Barnes, F.J. García de Abajo, Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys. Rev. B 82(15), 155447 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    W. Zhou, T.W. Odom, Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 6(7), 423–427 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    T. Yamaguchi, S. Yoshida, A. Kinbara, Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21(1), 173–187 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    V.G. Kravets, F. Schedin, S. Taylor, D. Viita, A.N. Grigorenko, Plasmonic resonances in optomagnetic metamaterials based on double dot arrays. Optics Express 18(10), 9780–9790 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu, M. Moskovits, Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12(4), 2088–2094 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA A 3(11), 1780–1787 (1986)Google Scholar
  34. 34.
    N. Papanikolaou, Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys. Rev. B 75(23), 235426 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations