Skip to main content

Super-Narrow, Extremely High Quality Collective Plasmon Resonances at Telecommunication Wavelengths

  • Chapter
  • First Online:
  • 382 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we describe the theory, fabrication and characterisation of gold nanostripe arrays on a thin gold film, with the spectral line full width at half-maximum (FWHM) as low as 5 nm and quality factors Q reaching 300, at important fibre-optic telecommunication wavelengths around 1.5 \(\upmu \)m.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For completeness, we note that an extra level of sensitivity can be achieved by measuring changes in phase instead of reflection for resonances with close to zero reflection at their maximum strength. This idea is explored in greater depth in Chap. 7.

  2. 2.

    For this reason the coupled dipole approximation is sometimes referred to as Markel-Schatz or Schatz-Markel theory [10].

  3. 3.

    Figure 4.5a and b are reproduced from Ben Thackray’s preliminary studies of super-narrow plasmon resonances [1]. The \(a = 1463\) nm and \(a = 1485\) nm curves in Fig. 4.5a and all data in Fig. 4.5b are from stripe arrays fabricated and characterised by Ben Thackray (again with assistance from Gregory Auton for lithography) in the early stages of this study.

References

  1. B.D. Thackray, Coupling of localised plasmon resonances. Ph.D. thesis, The University of Manchester, Manchester, UK, 2014

    Google Scholar 

  2. B.D. Thackray, P.A. Thomas, G.H. Auton, F.J. Rodriguez, O.P. Marshall, V.G. Kravets, A.N. Grigorenko, Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett. 15(5), 3519–3523 (2015)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)

    Article  ADS  Google Scholar 

  4. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)

    Google Scholar 

  5. V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12(4), 304–309 (2013)

    Google Scholar 

  6. V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)

    Google Scholar 

  7. J. Kim, H. Son, D.J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.R. Shen, F. Wang, Electrical control of optical plasmon resonance with graphene. Nano Lett. 12(11), 5598–5602 (2012)

    Google Scholar 

  8. S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120(23), 10871–10875 (2004)

    Google Scholar 

  9. V.A. Markel, Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B Atomic Mol. Optical Phys. 38(7), L115 (2005)

    Google Scholar 

  10. V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)

    Google Scholar 

  11. B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902 (2008)

    Google Scholar 

  12. L. Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 79(532), 399–416 (1907)

    Google Scholar 

  13. S.-Q. Li, W. Zhou, D. Bruce Buchholz, J.B. Ketterson, L.E. Ocola, K. Sakoda, R.P.H. Chang, Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Appl. Phys. Lett. 104(23), 231101 (2014)

    Google Scholar 

  14. F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97(20), 206806 (2006)

    Article  ADS  Google Scholar 

  15. V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)

    Article  ADS  Google Scholar 

  16. N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111(6), 3913–3961 (2011)

    Article  Google Scholar 

  17. A.L. Koh, K. Bao, I. Khan, W.E. Smith, G. Kothleitner, P. Nordlander, S.A. Maier, D.W. McComb, Electron energy-loss spectroscopy (eels) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3(10), 3015–3022 (2009)

    Article  Google Scholar 

  18. V.A. Markel, Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure. J. Mod. Optics 40(11), 2281–2291 (1993)

    Article  ADS  Google Scholar 

  19. S. Zou, G.C. Schatz, Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17(11), 2813 (2006)

    Article  ADS  Google Scholar 

  20. H. DeVoe, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys. 41(2), 393–400 (1964)

    Article  ADS  Google Scholar 

  21. H. DeVoe, Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J. Chem. Phys. 43(9), 3199–3208 (1965)

    Article  ADS  Google Scholar 

  22. E.M. Purcell, C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973)

    Article  ADS  Google Scholar 

  23. F.J. García De Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79(4), 1267 (2007)

    Article  ADS  Google Scholar 

  24. B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photon. 1(11), 1116–1126 (2014)

    Google Scholar 

  25. C.L. Haynes, A.D. McFarland, L. Zhao, R.P. Van Duyne, G.C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107(30), 7337–7342 (2003)

    Article  Google Scholar 

  26. E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Käll, Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5(6), 1065–1070 (2005)

    Article  ADS  Google Scholar 

  27. J. Sung, E.M. Hicks, R.P. Van Duyne, K.G. Spears, Nanoparticle spectroscopy: plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles. J. Phys. Chem. C 112(11), 4091–4096 (2008)

    Article  Google Scholar 

  28. B. Auguié, X.M. Bendana, W.L. Barnes, F.J. García de Abajo, Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys. Rev. B 82(15), 155447 (2010)

    Article  ADS  Google Scholar 

  29. W. Zhou, T.W. Odom, Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 6(7), 423–427 (2011)

    Article  ADS  Google Scholar 

  30. T. Yamaguchi, S. Yoshida, A. Kinbara, Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21(1), 173–187 (1974)

    Article  ADS  Google Scholar 

  31. V.G. Kravets, F. Schedin, S. Taylor, D. Viita, A.N. Grigorenko, Plasmonic resonances in optomagnetic metamaterials based on double dot arrays. Optics Express 18(10), 9780–9790 (2010)

    Article  ADS  Google Scholar 

  32. S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu, M. Moskovits, Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12(4), 2088–2094 (2012)

    Article  ADS  Google Scholar 

  33. M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA A 3(11), 1780–1787 (1986)

    Google Scholar 

  34. N. Papanikolaou, Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys. Rev. B 75(23), 235426 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, P.A. (2018). Super-Narrow, Extremely High Quality Collective Plasmon Resonances at Telecommunication Wavelengths. In: Narrow Plasmon Resonances in Hybrid Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97526-9_4

Download citation

Publish with us

Policies and ethics