Skip to main content

Two-Dimensional Materials

  • Chapter
  • First Online:
Narrow Plasmon Resonances in Hybrid Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 360 Accesses

Abstract

The first study of an atomically thin material was published by Wallace (Phys Rev 71(9):622, [1]) in 1947. Wallace was studying the electronic properties of graphite: he started his study by considering the electronic properties of a single layer of graphite (later termed graphene) and then extended this to bulk graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For completeness we also note the existence of two non-Raman scattering processes. In Rayleigh scattering the electron is excited from and returns to the ground state, meaning that the incident and scattered photons have the same wavelength. In fluorescence a photon excites an electron to a higher energy state. The electron returns to the ground state via a series of non-radiative transitions followed by one large transition. The final transition corresponds to fluorescent photon emission.

References

  1. P.R. Wallace, The band theory of graphite. Phys. Rev. 71(9), 622 (1947)

    Article  ADS  Google Scholar 

  2. R. Peierls, Quelques propriétés typiques des corps solides. Annales de l’institut Henri Poincaré 5, 177–222 (1935)

    MathSciNet  MATH  Google Scholar 

  3. L.D. Landau, Zur theorie der phasenumwandlungen ii. Phys. Z. Sowjetunion 11, 26–35 (1937)

    MATH  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Google Scholar 

  7. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)

    Google Scholar 

  8. E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105(26), 266601 (2010)

    Article  ADS  Google Scholar 

  9. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-variable optical transitions in graphene. Science 320(5873), 206–209 (2008)

    Article  ADS  Google Scholar 

  10. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  ADS  Google Scholar 

  11. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  ADS  Google Scholar 

  12. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)

    Article  ADS  Google Scholar 

  13. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)

    Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  ADS  Google Scholar 

  15. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  ADS  Google Scholar 

  16. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013)

    Article  Google Scholar 

  17. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)

    Article  Google Scholar 

  18. A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013)

    Google Scholar 

  19. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    Google Scholar 

  20. R.V. Gorbachev, J.C.W. Song, G. Yu, A.V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I.V. Grigorieva, K.S. Novoselov, L.S. Levitov, A.K. Geim, Detecting topological currents in graphene superlattices. Science 346(6208), 448–451 (2014)

    Article  ADS  Google Scholar 

  21. D.A. Bandurin, I. Torre, R.K. Kumar, M.B. Shalom, A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini, Negative local resistance caused by viscous electron backflow in graphene. Science 351(6277), 1055–1058 (2016)

    Article  ADS  Google Scholar 

  22. M.B. Shalom, M.J. Zhu, V.I. Falko, A. Mishchenko, A.V. Kretinin, K.S. Novoselov, C.R. Woods, K. Watanabe, T. Taniguchi, A.K. Geim, J.R. Prance, Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12(4), 318–322 (2016)

    Article  Google Scholar 

  23. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  24. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976)

    MATH  Google Scholar 

  26. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental review of graphene. ISRN Condens. Matter Phys. 2012, 501686 (2012)

    Google Scholar 

  27. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  ADS  Google Scholar 

  28. L.A. Falkovsky, A.A. Varlamov, Space-time dispersion of graphene conductivity. Eur. Phys. J. B-Condens. Matter Complex Syst. 56(4), 281–284 (2007)

    Article  Google Scholar 

  29. A.B. Kuzmenko, E. Van Heumen, F. Carbone, D. Van Der Marel, Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008)

    Article  ADS  Google Scholar 

  30. V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption. Phys. Rev. B 81(15), 155413 (2010)

    Article  ADS  Google Scholar 

  31. V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)

    Google Scholar 

  32. L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89(6), 1189 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)

    Article  ADS  Google Scholar 

  34. L. Yang, J. Deslippe, C.-H. Park, M.L. Cohen, S.G. Louie, Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103(18), 186802 (2009)

    Article  ADS  Google Scholar 

  35. L.A. Falkovsky, Optical properties of graphene, in Journal of Physics: Conference Series, vol. 129 (IOP Publishing, 2008), p. 012004

    Google Scholar 

  36. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532–535 (2008)

    Article  Google Scholar 

  37. Z. Sun, A. Martinez, F. Wang, Optical modulators with 2d layered materials. Nat. Photon. 10(4), 227–238 (2016)

    Article  ADS  Google Scholar 

  38. F.J. Garcia de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1(3), 135–152 (2014)

    Article  Google Scholar 

  39. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11(8), 3370–3377 (2011)

    Google Scholar 

  40. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7(5), 394–399 (2013)

    Article  ADS  Google Scholar 

  41. A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, F.H.L. Koppens, Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14(4), 421–425 (2015)

    Article  ADS  Google Scholar 

  42. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014)

    Article  Google Scholar 

  43. R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26(4), 956–956 (1957)

    Article  ADS  Google Scholar 

  44. T. Sōma, A. Sawaoka, S. Saito, Characterization of wurtzite type boron nitride synthesized by shock compression. Mater. Res. Bull. 9(6), 755–762 (1974)

    Article  Google Scholar 

  45. R.S. Pease, An x-ray study of boron nitride. Acta Crystallogr. 5(3), 356–361 (1952)

    Article  Google Scholar 

  46. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. Van Den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007)

    Article  ADS  Google Scholar 

  47. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)

    Article  ADS  Google Scholar 

  48. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, A.M. Pulickel, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010)

    Article  ADS  Google Scholar 

  49. Y.-N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44(15), 7787 (1991)

    Google Scholar 

  50. P. Umari, A. Pasquarello, Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 89(15), 157602 (2002)

    Article  ADS  Google Scholar 

  51. X. Wang, D. Vanderbilt, First-principles perturbative computation of phonon properties of insulators in finite electric fields. Phys. Rev. B 74(5), 054304 (2006)

    Article  ADS  Google Scholar 

  52. X. Wang, D. Vanderbilt, First-principles perturbative computation of dielectric and born charge tensors in finite electric fields. Phys. Rev. B 75(11), 115116 (2007)

    Article  ADS  Google Scholar 

  53. J.D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T.L. Reinecke, S.A. Maier, O.J. Glembocki, Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4(1), 44–68 (2015)

    Google Scholar 

  54. J.D. Caldwell, A.V. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C.T. Ellis, J.G. Tischler, C.R. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, K.S. Novoselov, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014)

    Article  ADS  Google Scholar 

  55. S. Dai, Q. Ma, T. Andersen, A.S. Mcleod, Z. Fei, M.K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, D.N. Basov, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6 (2015)

    Google Scholar 

  56. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Nirag, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchinson, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  ADS  Google Scholar 

  57. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  ADS  Google Scholar 

  58. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007)

    Article  ADS  Google Scholar 

  59. P. Blake, E.W. Hill, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91(6), 063124 (2007)

    Article  ADS  Google Scholar 

  60. A.V. Kretinin, Y. Cao, J.S. Tu, G.L. Yu, R. Jalil, K.S. Novoselov, S.J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C.R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A.K. Geim, R.V. Gorbachev, Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14(6), 3270–3276 (2014)

    Article  ADS  Google Scholar 

  61. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013)

    Article  ADS  Google Scholar 

  62. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)

    Article  ADS  Google Scholar 

  63. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, B.H. Ahn, J.-H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Article  ADS  Google Scholar 

  64. V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)

    Google Scholar 

  65. C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501–502 (1928)

    Article  ADS  Google Scholar 

  66. L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009)

    Article  ADS  Google Scholar 

  67. C. Thomsen, S. Reich, Double resonant raman scattering in graphite. Phys. Rev. Lett. 85(24), 5214 (2000)

    Article  ADS  Google Scholar 

  68. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, P.A. (2018). Two-Dimensional Materials. In: Narrow Plasmon Resonances in Hybrid Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97526-9_3

Download citation

Publish with us

Policies and ethics