Two-Dimensional Materials

  • Philip A. ThomasEmail author
Part of the Springer Theses book series (Springer Theses)


The first study of an atomically thin material was published by Wallace (Phys Rev 71(9):622, [1]) in 1947. Wallace was studying the electronic properties of graphite: he started his study by considering the electronic properties of a single layer of graphite (later termed graphene) and then extended this to bulk graphite.


Bulk Graphite Graphene Plasmons Mechanical Exfoliation PMMA Film Reststrahlen Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.R. Wallace, The band theory of graphite. Phys. Rev. 71(9), 622 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    R. Peierls, Quelques propriétés typiques des corps solides. Annales de l’institut Henri Poincaré 5, 177–222 (1935)MathSciNetzbMATHGoogle Scholar
  3. 3.
    L.D. Landau, Zur theorie der phasenumwandlungen ii. Phys. Z. Sowjetunion 11, 26–35 (1937)zbMATHGoogle Scholar
  4. 4.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)Google Scholar
  7. 7.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)Google Scholar
  8. 8.
    E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105(26), 266601 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-variable optical transitions in graphene. Science 320(5873), 206–209 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)Google Scholar
  14. 14.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRefGoogle Scholar
  18. 18.
    A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013)Google Scholar
  19. 19.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)Google Scholar
  20. 20.
    R.V. Gorbachev, J.C.W. Song, G. Yu, A.V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I.V. Grigorieva, K.S. Novoselov, L.S. Levitov, A.K. Geim, Detecting topological currents in graphene superlattices. Science 346(6208), 448–451 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    D.A. Bandurin, I. Torre, R.K. Kumar, M.B. Shalom, A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini, Negative local resistance caused by viscous electron backflow in graphene. Science 351(6277), 1055–1058 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Shalom, M.J. Zhu, V.I. Falko, A. Mishchenko, A.V. Kretinin, K.S. Novoselov, C.R. Woods, K. Watanabe, T. Taniguchi, A.K. Geim, J.R. Prance, Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12(4), 318–322 (2016)CrossRefGoogle Scholar
  23. 23.
    M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  24. 24.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976)zbMATHGoogle Scholar
  26. 26.
    D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental review of graphene. ISRN Condens. Matter Phys. 2012, 501686 (2012)Google Scholar
  27. 27.
    F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    L.A. Falkovsky, A.A. Varlamov, Space-time dispersion of graphene conductivity. Eur. Phys. J. B-Condens. Matter Complex Syst. 56(4), 281–284 (2007)CrossRefGoogle Scholar
  29. 29.
    A.B. Kuzmenko, E. Van Heumen, F. Carbone, D. Van Der Marel, Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption. Phys. Rev. B 81(15), 155413 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)Google Scholar
  32. 32.
    L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89(6), 1189 (1953)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    L. Yang, J. Deslippe, C.-H. Park, M.L. Cohen, S.G. Louie, Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103(18), 186802 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Falkovsky, Optical properties of graphene, in Journal of Physics: Conference Series, vol. 129 (IOP Publishing, 2008), p. 012004Google Scholar
  36. 36.
    Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532–535 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Sun, A. Martinez, F. Wang, Optical modulators with 2d layered materials. Nat. Photon. 10(4), 227–238 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    F.J. Garcia de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1(3), 135–152 (2014)CrossRefGoogle Scholar
  39. 39.
    F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11(8), 3370–3377 (2011)Google Scholar
  40. 40.
    H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7(5), 394–399 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, F.H.L. Koppens, Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14(4), 421–425 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014)CrossRefGoogle Scholar
  43. 43.
    R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26(4), 956–956 (1957)ADSCrossRefGoogle Scholar
  44. 44.
    T. Sōma, A. Sawaoka, S. Saito, Characterization of wurtzite type boron nitride synthesized by shock compression. Mater. Res. Bull. 9(6), 755–762 (1974)CrossRefGoogle Scholar
  45. 45.
    R.S. Pease, An x-ray study of boron nitride. Acta Crystallogr. 5(3), 356–361 (1952)CrossRefGoogle Scholar
  46. 46.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. Van Den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, A.M. Pulickel, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Y.-N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44(15), 7787 (1991)Google Scholar
  50. 50.
    P. Umari, A. Pasquarello, Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 89(15), 157602 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    X. Wang, D. Vanderbilt, First-principles perturbative computation of phonon properties of insulators in finite electric fields. Phys. Rev. B 74(5), 054304 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    X. Wang, D. Vanderbilt, First-principles perturbative computation of dielectric and born charge tensors in finite electric fields. Phys. Rev. B 75(11), 115116 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    J.D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T.L. Reinecke, S.A. Maier, O.J. Glembocki, Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4(1), 44–68 (2015)Google Scholar
  54. 54.
    J.D. Caldwell, A.V. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C.T. Ellis, J.G. Tischler, C.R. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, K.S. Novoselov, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    S. Dai, Q. Ma, T. Andersen, A.S. Mcleod, Z. Fei, M.K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, D.N. Basov, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6 (2015)Google Scholar
  56. 56.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Nirag, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchinson, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    P. Blake, E.W. Hill, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91(6), 063124 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    A.V. Kretinin, Y. Cao, J.S. Tu, G.L. Yu, R. Jalil, K.S. Novoselov, S.J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C.R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A.K. Geim, R.V. Gorbachev, Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14(6), 3270–3276 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, B.H. Ahn, J.-H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)Google Scholar
  65. 65.
    C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501–502 (1928)ADSCrossRefGoogle Scholar
  66. 66.
    L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    C. Thomsen, S. Reich, Double resonant raman scattering in graphite. Phys. Rev. Lett. 85(24), 5214 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations