Plasmonics
Chapter
First Online:
- 238 Downloads
Abstract
We start our discussion of the fundamental origins of plasmonics by considering the behaviour of electromagnetic waves in metals. Our approach in Sects. 2.1–2.3 largely follows those of Maier (Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007, Maier (Plasmonics: Fundamentals and Applications. Springer Science and BusinessMedia, 2007) [1]) and Raether (Surface plasmons on smooth surfaces. Springer, 1988, Raether (Surface Plasmons on Smooth Surfaces. Springer, 1988) [2]). SI notation is used throughout.
Keywords
Localized Surface Plasmon Resonance (LSPRs) Chromium Sublayer Photon Dispersion Curve Free-space Photon Strong Interband Transitions
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
- 2.H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988)Google Scholar
- 3.P. Drude, Zur elektronentheorie der metalle. Ann. Phys. 306(3), 566–613 (1900)CrossRefGoogle Scholar
- 4.P. Drude, Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte. Ann. Phys. 308(11), 369–402 (1900)CrossRefGoogle Scholar
- 5.N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976)Google Scholar
- 6.C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118(3), 640 (1960)ADSCrossRefGoogle Scholar
- 7.A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216(4), 398–410 (1968)ADSCrossRefGoogle Scholar
- 8.E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23(12), 2135–2136 (1968)ADSCrossRefGoogle Scholar
- 9.E. Devaux, T.W. Ebbesen, J.-C. Weeber, A. Dereux, Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83(24), 4936–4938 (2003)ADSCrossRefGoogle Scholar
- 10.P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)Google Scholar
- 11.V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)Google Scholar
- 12.B.D. Thackray, P.A. Thomas, G.H. Auton, F.J. Rodriguez, O.P. Marshall, V.G. Kravets, A.N. Grigorenko, Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett. 15(5), 3519–3523 (2015)Google Scholar
- 13.G. Bemski, Recombination properties of gold in silicon. Phys. Rev. 111(6), 1515 (1958)ADSCrossRefGoogle Scholar
- 14.L.D. Yau, C.T. Sah, Measurement of trapped-minority-carrier thermal emission rates from Au, Ag, and Co traps in silicon. Appl. Phys. Lett. 21(4), 157–158 (1972)ADSCrossRefGoogle Scholar
- 15.G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013)CrossRefGoogle Scholar
- 16.B.R. Cooper, H. Ehrenreich, H.R. Philipp. Optical properties of noble metals. II. Phys. Rev.138(2A), A494 (1965)Google Scholar
- 17.P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)ADSCrossRefGoogle Scholar
- 18.M. Futamata, Application of attenuated total reflection surface-plasmon-polariton raman spectroscopy to gold and copper. Appl. Opt. 36(1), 364–375 (1997)ADSCrossRefGoogle Scholar
- 19.N. Tajima, M. Fukui, Y. Shintani, O. Tada, In situ studies on oxidation of copper films by using atr technique. J. Phys. Soc. Jpn. 54(11), 4236–4240 (1985)ADSCrossRefGoogle Scholar
- 20.G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7(7), 1947–1952 (2007)ADSCrossRefGoogle Scholar
- 21.V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep.4 (2014)Google Scholar
- 22.J.M. McMahon, G.C. Schatz, S.K. Gray, Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013)CrossRefGoogle Scholar
- 23.C. Langhammer, M. Schwind, B. Kasemo, I. Zoric, Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)ADSCrossRefGoogle Scholar
- 24.M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas. Nano Lett. 12(11), 6000–6004 (2012)ADSCrossRefGoogle Scholar
- 25.M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)CrossRefGoogle Scholar
- 26.B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R.F. Aroca, B.-W. Mao, Z.-Q. Tian, Surface-enhanced raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125(32), 9598–9599 (2003)CrossRefGoogle Scholar
- 27.A.M. Watson, X. Zhang, R. Alcaraz de La Osa, J.M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, H.O. Everitt, Rhodium nanoparticles for ultraviolet plasmonics. Nano Lett. 15(2), 1095–1100 (2015)ADSCrossRefGoogle Scholar
- 28.M.W. Knight, T. Coenen, Y. Yang, B.J.M. Brenny, M. Losurdo, A.S. Brown, H.O. Everitt, A. Polman, Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9(2), 2049–2060 (2015)CrossRefGoogle Scholar
- 29.M.B. Ross, G.C. Schatz, Aluminum and indium plasmonic nanoantennas in the ultraviolet. J. Phys. Chem. C 118(23), 12506–12514 (2014)CrossRefGoogle Scholar
- 30.A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)ADSCrossRefGoogle Scholar
- 31.M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22(14), 143201 (2010)ADSCrossRefGoogle Scholar
- 32.A. Tsiatmas, A.R. Buckingham, V.A. Fedotov, S. Wang, Y. Chen, P.A.J. De Groot, N.I. Zheludev, Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett. 97(11), 111106 (2010)ADSCrossRefGoogle Scholar
- 33.V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. De Groot, Y. Chen, S. Wang, N.I. Zheludev, Temperature control of fano resonances and transmission in superconducting metamaterials. Opt. Exp. 18(9), 9015–9019 (2010)ADSCrossRefGoogle Scholar
- 34.H. Tompkins, E.A. Irene, Handbook of Ellipsometry (William Andrew, Springer, 2005)Google Scholar
- 35.B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 1(11), 1116–1126 (2014)Google Scholar
- 36.H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)ADSCrossRefGoogle Scholar
- 37.W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)Google Scholar
- 38.E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)ADSCrossRefGoogle Scholar
- 39.K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADSCrossRefGoogle Scholar
- 40.S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods (1999)Google Scholar
- 41.P. Evans, W.R. Hendren, R. Atkinson, G.A. Wurtz, W. Dickson, A.V. Zayats, R.J. Pollard, Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17(23), 5746 (2006)ADSCrossRefGoogle Scholar
- 42.C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599–5611 (2001)CrossRefGoogle Scholar
- 43.L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, P. Barois, C.R. Simovski, V.G. Kravets, A.N. Grigorenko, Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26(2), 324–330 (2014)Google Scholar
- 44.S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V.G. Kravets, A.N. Grigorenko, N.A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, P. Barois, Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies. Mater. Horiz. 3(6), 596–601 (2016)CrossRefGoogle Scholar
- 45.V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)Google Scholar
- 46.M.-L. Thèye, Investigation of the optical properties of au by means of thin semitransparent films. Phys. Rev. B 2(8), 3060 (1970)ADSCrossRefGoogle Scholar
- 47.S.R. Nagel, S.E. Schnatterly, Frequency dependence of the Drude relaxation time in metal films. Phys. Rev. B 9(4), 1299 (1974)ADSCrossRefGoogle Scholar
- 48.J.B. Smith, H. Ehrenreich, Frequency dependence of the optical relaxation time in metals. Phys. Rev. B 25(2), 923 (1982)ADSCrossRefGoogle Scholar
- 49.S.J. Youn, T.H. Rho, B.I. Min, K.S. Kim, Extended Drude model analysis of noble metals. Phys. Status Solidi (b) 244(4), 1354–1362 (2007)ADSCrossRefGoogle Scholar
- 50.R.N. Gurzhi, Mutual electron correlations in metal optics. Sov. Phys. JETP 8(4), 673–675 (1959)Google Scholar
- 51.B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018