Advertisement

Plasmonics

  • Philip A. ThomasEmail author
Chapter
  • 238 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

We start our discussion of the fundamental origins of plasmonics by considering the behaviour of electromagnetic waves in metals. Our approach in Sects. 2.1–2.3 largely follows those of Maier (Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007, Maier (Plasmonics: Fundamentals and Applications. Springer Science and BusinessMedia, 2007) [1]) and Raether (Surface plasmons on smooth surfaces. Springer, 1988, Raether (Surface Plasmons on Smooth Surfaces. Springer, 1988) [2]). SI notation is used throughout.

Keywords

Localized Surface Plasmon Resonance (LSPRs) Chromium Sublayer Photon Dispersion Curve Free-space Photon Strong Interband Transitions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  2. 2.
    H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988)Google Scholar
  3. 3.
    P. Drude, Zur elektronentheorie der metalle. Ann. Phys. 306(3), 566–613 (1900)CrossRefGoogle Scholar
  4. 4.
    P. Drude, Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte. Ann. Phys. 308(11), 369–402 (1900)CrossRefGoogle Scholar
  5. 5.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976)Google Scholar
  6. 6.
    C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118(3), 640 (1960)ADSCrossRefGoogle Scholar
  7. 7.
    A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216(4), 398–410 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23(12), 2135–2136 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    E. Devaux, T.W. Ebbesen, J.-C. Weeber, A. Dereux, Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83(24), 4936–4938 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)Google Scholar
  11. 11.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)Google Scholar
  12. 12.
    B.D. Thackray, P.A. Thomas, G.H. Auton, F.J. Rodriguez, O.P. Marshall, V.G. Kravets, A.N. Grigorenko, Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett. 15(5), 3519–3523 (2015)Google Scholar
  13. 13.
    G. Bemski, Recombination properties of gold in silicon. Phys. Rev. 111(6), 1515 (1958)ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Yau, C.T. Sah, Measurement of trapped-minority-carrier thermal emission rates from Au, Ag, and Co traps in silicon. Appl. Phys. Lett. 21(4), 157–158 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013)CrossRefGoogle Scholar
  16. 16.
    B.R. Cooper, H. Ehrenreich, H.R. Philipp. Optical properties of noble metals. II. Phys. Rev.138(2A), A494 (1965)Google Scholar
  17. 17.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    M. Futamata, Application of attenuated total reflection surface-plasmon-polariton raman spectroscopy to gold and copper. Appl. Opt. 36(1), 364–375 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    N. Tajima, M. Fukui, Y. Shintani, O. Tada, In situ studies on oxidation of copper films by using atr technique. J. Phys. Soc. Jpn. 54(11), 4236–4240 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7(7), 1947–1952 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep.4 (2014)Google Scholar
  22. 22.
    J.M. McMahon, G.C. Schatz, S.K. Gray, Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Langhammer, M. Schwind, B. Kasemo, I. Zoric, Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas. Nano Lett. 12(11), 6000–6004 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R.F. Aroca, B.-W. Mao, Z.-Q. Tian, Surface-enhanced raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125(32), 9598–9599 (2003)CrossRefGoogle Scholar
  27. 27.
    A.M. Watson, X. Zhang, R. Alcaraz de La Osa, J.M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, H.O. Everitt, Rhodium nanoparticles for ultraviolet plasmonics. Nano Lett. 15(2), 1095–1100 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M.W. Knight, T. Coenen, Y. Yang, B.J.M. Brenny, M. Losurdo, A.S. Brown, H.O. Everitt, A. Polman, Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9(2), 2049–2060 (2015)CrossRefGoogle Scholar
  29. 29.
    M.B. Ross, G.C. Schatz, Aluminum and indium plasmonic nanoantennas in the ultraviolet. J. Phys. Chem. C 118(23), 12506–12514 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22(14), 143201 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A. Tsiatmas, A.R. Buckingham, V.A. Fedotov, S. Wang, Y. Chen, P.A.J. De Groot, N.I. Zheludev, Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett. 97(11), 111106 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. De Groot, Y. Chen, S. Wang, N.I. Zheludev, Temperature control of fano resonances and transmission in superconducting metamaterials. Opt. Exp. 18(9), 9015–9019 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    H. Tompkins, E.A. Irene, Handbook of Ellipsometry (William Andrew, Springer, 2005)Google Scholar
  35. 35.
    B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 1(11), 1116–1126 (2014)Google Scholar
  36. 36.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)Google Scholar
  38. 38.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods (1999)Google Scholar
  41. 41.
    P. Evans, W.R. Hendren, R. Atkinson, G.A. Wurtz, W. Dickson, A.V. Zayats, R.J. Pollard, Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17(23), 5746 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599–5611 (2001)CrossRefGoogle Scholar
  43. 43.
    L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, P. Barois, C.R. Simovski, V.G. Kravets, A.N. Grigorenko, Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26(2), 324–330 (2014)Google Scholar
  44. 44.
    S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V.G. Kravets, A.N. Grigorenko, N.A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, P. Barois, Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies. Mater. Horiz. 3(6), 596–601 (2016)CrossRefGoogle Scholar
  45. 45.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)Google Scholar
  46. 46.
    M.-L. Thèye, Investigation of the optical properties of au by means of thin semitransparent films. Phys. Rev. B 2(8), 3060 (1970)ADSCrossRefGoogle Scholar
  47. 47.
    S.R. Nagel, S.E. Schnatterly, Frequency dependence of the Drude relaxation time in metal films. Phys. Rev. B 9(4), 1299 (1974)ADSCrossRefGoogle Scholar
  48. 48.
    J.B. Smith, H. Ehrenreich, Frequency dependence of the optical relaxation time in metals. Phys. Rev. B 25(2), 923 (1982)ADSCrossRefGoogle Scholar
  49. 49.
    S.J. Youn, T.H. Rho, B.I. Min, K.S. Kim, Extended Drude model analysis of noble metals. Phys. Status Solidi (b) 244(4), 1354–1362 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    R.N. Gurzhi, Mutual electron correlations in metal optics. Sov. Phys. JETP 8(4), 673–675 (1959)Google Scholar
  51. 51.
    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations