Advertisement

Introduction

  • Philip A. ThomasEmail author
Chapter
  • 219 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Metallic nanoparticles have been known for their unusual optical properties for millennia (Colomban P (2009) The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure.

References

  1. 1.
    P. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009). Trans Tech Publications, 2009Google Scholar
  2. 2.
    P. Colomban, A. Tournie, P. Ricciardi, Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J. Raman Spectrosc. 40(12), 1949–1955 (2009)Google Scholar
  3. 3.
    I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus cup—a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)Google Scholar
  4. 4.
    M. Faraday, The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)Google Scholar
  5. 5.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3), 377–445 (1908)Google Scholar
  6. 6.
    M. Cardona, W. Marx, Verwechselt, vergessen, wieder gefunden. Phys. J. 11, 27–29 (2004)Google Scholar
  7. 7.
    T. Wriedt, Mie theory: a review, in The Mie Theory (Springer, 2012), pp. 53–71Google Scholar
  8. 8.
    L. Lorenz, Det kongelige danske videnskabernes selskabs skrifter 6. raekke, 6. bind, 1 (1890)Google Scholar
  9. 9.
    P. Debye, Der lichtdruck auf kugeln von beliebigem material. Ann. Phys. 335(11), 57–136 (1909)Google Scholar
  10. 10.
    R.W. Wood, XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902)Google Scholar
  11. 11.
    L. Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character79(532), 399–416 (1907)Google Scholar
  12. 12.
    U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfelds waves). J. Opt. Soc. Am. 31(3), 213–222 (1941)Google Scholar
  13. 13.
    A. Hessel, A.A. Oliner, A new theory of woods anomalies on optical gratings. Appl. Opt. 4(10), 1275–1297 (1965)Google Scholar
  14. 14.
    D. Pines, Collective energy losses in solids. Rev. Mod. Phys. 28(3), 184 (1956)Google Scholar
  15. 15.
    A. Sommerfeld, Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes. Ann. Phys. 303(2), 233–290 (1899)Google Scholar
  16. 16.
    J. Zenneck, Über die fortpflanzung ebener elektromagnetischer wellen längs einer ebenen leiterfläche und ihre beziehung zur drahtlosen telegraphie. Ann. Phys. 328(10), 846–866 (1907)Google Scholar
  17. 17.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874 (1957)Google Scholar
  18. 18.
    C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118(3), 640 (1960)Google Scholar
  19. 19.
    R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21(22), 1530 (1968)Google Scholar
  20. 20.
    U. Kreibig, P. Zacharias, Surface plasma resonances in small spherical silver and gold particles. Z. Phys. 231(2), 128–143 (1970)Google Scholar
  21. 21.
    A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216(4), 398–410 (1968)Google Scholar
  22. 22.
    E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23(12), 2135–2136 (1968)Google Scholar
  23. 23.
    M.L. Brongersma, P.G. Kik, Surface Plasmon Nanophotonics (Springer, 2007)Google Scholar
  24. 24.
    S.L. Cunningham, A.A. Maradudin, R.F. Wallis, Effect of a charge layer on the surface-plasmon-polariton dispersion curve. Phys. Rev. B 10(8), 3342 (1974)Google Scholar
  25. 25.
    H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988)Google Scholar
  26. 26.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)Google Scholar
  27. 27.
    D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977)Google Scholar
  28. 28.
    M.G. Albrecht, J.A. Creighton, Anomalously intense raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977)Google Scholar
  29. 29.
    H. Metiu, P. Das, The electromagnetic theory of surface enhanced spectroscopy. Annu. Rev. Phys. Chem. 35(1), 507–536 (1984)Google Scholar
  30. 30.
    M. Kerker, Electromagnetic model for surface-enhanced raman scattering (SERS) on metal colloids. Acc. Chem. Res. 17(8), 271–277 (1984)Google Scholar
  31. 31.
    M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57(3), 783 (1985)Google Scholar
  32. 32.
    R.L. Garrell, Surface-enhanced Raman spectroscopy. Anal. Chem. 61(6), 401A–411A (1989)Google Scholar
  33. 33.
    I. Pockrand, J.D. Swalen, J.G. Gordon, M.R. Philpott, Surface plasmon spectroscopy of organic monolayer assemblies. Surf. Sci. 74(1), 237–244 (1978)Google Scholar
  34. 34.
    J.G. Gordon, S. Ernst, Surface plasmons as a probe of the electrochemical interface. Surf. Sci. 101(1–3), 499–506 (1980)Google Scholar
  35. 35.
    C. Nylander, B. Liedberg, T. Lind, Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79–88 (1982)Google Scholar
  36. 36.
    B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)Google Scholar
  37. 37.
    B. Liedberg, C. Nylander, and I. Lundström, Biosensing with surface plasmon resonance–how it all started. Biosens. Bioelectron.10(8), i–ix (1995)Google Scholar
  38. 38.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1), 3–15 (1999)Google Scholar
  39. 39.
    J. Bouley, GE Healthcare acquires Biacore Intl. for \$390 million. DDN-News7(7), E070601 (2006)Google Scholar
  40. 40.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667 (1997)Google Scholar
  41. 41.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)Google Scholar
  42. 42.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)Google Scholar
  43. 43.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)Google Scholar
  44. 44.
    V.G. Kravets, F. Schedin, G. Pisano, B. Thackray, P.A. Thomas, A.N. Grigorenko, Nanoparticle arrays: from magnetic response to coupled plasmon resonances. Phys. Rev. B 90(12), 125445 (2014)Google Scholar
  45. 45.
    B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902 (2008)Google Scholar
  46. 46.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)Google Scholar
  47. 47.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)Google Scholar
  48. 48.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nanofabricated media with negative permeability at visible frequencies. Nature 438(7066), 335–338 (2005)Google Scholar
  49. 49.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10(4), 509 (1968)Google Scholar
  50. 50.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)Google Scholar
  51. 51.
    M.L. Juan, M. Righini, R. Quidant, Plasmon nano-optical tweezers. Nat. Photonics 5(6), 349–356 (2011)Google Scholar
  52. 52.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)Google Scholar
  53. 53.
    X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006)Google Scholar
  54. 54.
    R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)Google Scholar
  55. 55.
    A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)Google Scholar
  56. 56.
    T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011)Google Scholar
  57. 57.
    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.N. Castro, A.H. Castro Neto, K.S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013)Google Scholar
  58. 58.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12(4), 304–309 (2013)Google Scholar
  59. 59.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep.4 (2014)Google Scholar
  60. 60.
    D. Ansell, I.P. Radko, Z. Han, F.J. Rodriguez, S.I. Bozhevolnyi, A.N. Grigorenko, Hybrid graphene plasmonic waveguide modulators. Nat. Commun.6 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations