Skip to main content

Theoretical Background

  • Chapter
  • First Online:
Searches for Dijet Resonances

Part of the book series: Springer Theses ((Springer Theses))

  • 190 Accesses

Abstract

The theoretical description of particles and their interactions is provided by the Standard Model of particle physics, also referred to as the Standard Model in this thesis. This theory was finalised in the 1970s, and has been extremely successful, with experimental results confirming the predictions of the Standard Model to increasing degrees of precision [1]. Despite the huge successes of the Standard Model, there are many reasons to believe that this theory is incomplete, and that there is new physics ‘beyond’ the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The majority of the limit contours were produced by reinterpreting model-independent limits, using the technique outlined by Dobrescu and Yu in [38]. The results published by the ATLAS Collaboration with a 20.3 \(\mathrm{fb}^{-1}\) dataset collected at \(\sqrt{s}=8\) TeV [70] were added using the same technique. The CMS Scouting result was added by digitising the limit contour in [73] using WebPlotDigitizer [74].

References

  1. Weinberg S (2004) The making of the standard model. Eur Phys J C34:5–13. https://doi.org/10.1140/epjc/s2004-01761-1, arXiv:hep-ph/0401010 [hep-ph]

  2. Novaes SF (1999) Standard model: an introduction. In: Particles and fields. Proceedings, 10th Jorge Andre Swieca summer school, Sao Paulo, Brazil, 6–12 Feb 1999. pp 5–102. arXiv:hep-ph/0001283 [hep-ph]

  3. Pich A (2007) The Standard model of electroweak interactions. In: High-energy physics. Proceedings, European School, Aronsborg, Sweden, June 18–July 1 2006. pp 1–49. arXiv:0705.4264 [hep-ph]

  4. Purcell A (2012) Go on a particle quest at the first CERN webfest. Le premier webfest du CERN se lance à la conquiête des particules. BUL-NA-2012-269

    Google Scholar 

  5. Higgs PW (1964) Broken symmetries and the masses of Gauge Bosons. Phys Rev Lett 13:508–509. https://doi.org/10.1103/PhysRevLett.13.508

    Article  ADS  MathSciNet  Google Scholar 

  6. Englert F, Brout R (1964) Broken symmetry and the mass of Gauge vector mesons. Phys Rev Lett 13:321–323. https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  7. Khodjamirian A (2004) Quantum chromodynamics and hadrons: an elementary introduction. In: High-energy physics. Proceedings, European School, Tsakhkadzor, Armenia, 24 Aug–6 Sept 2003. pp 173–222. arXiv:hep-ph/0403145 [hep-ph]

  8. Particle Data Group, Patrignani C et al (2016) Review of particle physics. Chin Phys C40.10. https://doi.org/10.1088/1674-1137/40/10/100001

  9. Sarkar U (2008) Particle and astroparticle physics. Series in high energy physics, cosmology, and gravitation. Taylor & Francis, New York. https://doi.org/10.1201/9781584889328, ISBN: 9781584889311

  10. Van J (1998) ‘98 electroweak interactions and unified theories. Moriond particle physics meetings. Ed. Frontières, ISBN: 9782863322444

    Google Scholar 

  11. Harris RM, Kousouris K (2011) Searches for dijet resonances at hadron colliders. Intl J Mod Phys A 26.30n31:5005–5055. https://doi.org/10.1142/S0217751X11054905, arXiv:1110.5302 [hep-ex]

  12. Sjostrand T (2006) Monte Carlo generators. In: High-energy physics. Proceedings, European School, Aronsborg, Sweden, 18 June–1 July 2006. pp 51–74. arXiv:hep-ph/0611247 [hep-ph]

  13. Gieseke S (2002) Event generators: new developments. In: Hadron collider physics. Proceedings, 14th Topical Conference, HCP 2002, Karlsruhe, Germany, 29 Sept–4 Oct 2002. pp 439–452. arXiv:hep-ph/0210294 [hep-ph]

  14. Höche S (2014) Introduction to parton-shower event generators. In: Theoretical advanced study institute in elementary particle physics: journeys through the precision frontier: amplitudes for colliders (TASI 2014) Boulder, Colorado, 2–27 June 2014. arXiv:1411.4085 [hep-ph]

  15. Alwall J (2007) An improved description of charged higgs boson production. Subnucl. Ser. 42:346–355. https://doi.org/10.1142/9789812708427_0012, arXiv:hep-ph/0410151 [hep-ph]

  16. Collins JC, Soper DE, Sterman GF (1989) Factorization of hard processes in QCD. Adv Ser Direct High Energy Phys 5:1–91 https://doi.org/10.1142/9789814503266_0001. arXiv:hep-ph/0409313 [hep-ph]

  17. Kumericki K (2016) Feynman diagrams for beginners. arXiv:1602.04182 [physics.ed-ph]

  18. Reina L (2006) Lecture notes from ‘Practical next-to-leading order calculation’ course. CTEQ Summer School. http://www.hep.fsu.edu/~reina/talks/cteq06nlo.pdf

  19. Tricoli A (2009) Underlying event studies at ATLAS. Technical report, ATL-PHYS-PROC-2009-048. Geneva: CERN

    Google Scholar 

  20. Andersson B et al (1983) Parton fragmentation and string dynamics. Phys Rept 97:31–145. https://doi.org/10.1016/0370-1573(83)90080-7

    Article  ADS  Google Scholar 

  21. Webber BR (1984) A QCD model for jet fragmentation including soft gluon interference. Nucl Phys B 238:492–528. https://doi.org/10.1016/0550-3213(84)90333-X

    Article  ADS  Google Scholar 

  22. Sjostrand T, Mrenna S, Skands PZ (2008) A brief introduction to PYTHIA 8.1. Comput Phys Commun 178:852–867. https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820 [hep-ph]

  23. Gleisberg T et al (2009) Event generation with SHERPA 1.1. JHEP 02:007. https://doi.org/10.1088/1126-6708/2009/02/007, arXiv:0811.4622 [hep-ph]

  24. GEANT4 Collaboration, Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Meth A506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

  25. ATLAS Collaboration (2010) The ATLAS simulation infrastructure. Eur Phys J C70:823–874. https://doi.org/10.1140/epjc/s10052-010-1429-9, arXiv:1005.4568 [physics.ins-det]

  26. Webb S (2004) Out of this world: colliding universes, branes, strings, and other wild ideas of modern physics. Copernicus Series. Springer, Berlin. http://www.springer.com/gb/book/9780387029306, ISBN: 9780387029306

  27. van den Bergh S (1999) The early history of dark matter. Publ Astron Soc Pac 111:657. https://doi.org/10.1086/316369, arXiv:astro-ph/9904251 [astro-ph]

  28. Kunze KE (2016) An introduction to cosmology. In: Proceedings, 8th CERN-Latin-American school of high-energy physics (CLASHEP2015): Ibarra, Ecuador, 05–17 Mar 2015. pp 177–212. arXiv:1604.07817 [astro-ph.CO]

  29. Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta 6:110–127. https://doi.org/10.1007/s10714-008-0707-4

    Article  ADS  MATH  Google Scholar 

  30. Rubin VC, Thonnard N, Ford WK Jr (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R \(=\) 4kpc/ to UGC 2885 /R \(=\) 122 kpc/. Astrophys J 238:471. https://doi.org/10.1086/158003

    Article  ADS  Google Scholar 

  31. Council NR, Sciences DEP, Astronomy BP, Universe CP (2003) Connecting quarks with the cosmos: eleven science questions for the new century. National Academies, Washington. https://www.nap.edu/catalog/10079/connecting-quarks-with-the-cosmos-eleven-science-questions-for-the, ISBN: 9780309171137

  32. ESA/Hubble, NASA (2012) Hubble spies a spiral galaxy edge-on. https://www.nasa.gov/multimedia/imagegallery/image_feature_2210.html

  33. NASA’s Chandra X-ray Observatory (2016) NASA finds direct proof of dark matter. http://chandra.harvard.edu/press/06_releases/press_082106.html

  34. Collaboration Planck (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]

  35. Gelmini GB (2014) TASI 2014 lectures: the hunt for dark matter. In: Theoretical advanced study institute in elementary particle physics: journeys through the precision frontier: amplitudes for colliders (TASI 2014) Boulder, Colorado, 2–27 June 2014. arXiv:1502.01320 [hep-ph]

  36. Chala M et al (2015) Constraining dark sectors with monojets and dijets. JHEP 07:089. https://doi.org/10.1007/JHEP07(2015)089, arXiv:1503.05916 [hep-ph]

  37. Abercrombie D et al (2015) In: Boveia A et al (ed) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. arXiv:1507.00966 [hep-ex]

  38. Dobrescu BA, Yu F (2013) Coupling-mass mapping of dijet peak searches. Phys Rev D 88:035021. https://doi.org/10.1103/PhysRevD.88.035021. arXiv:1306.2629 [hep-ph]

  39. Altarelli G, Mele B, Ruiz-Altaba M (1989) Searching for new heavy vector bosons in \(p\bar{p}\) Colliders. Z Phys C45:109. https://doi.org/10.1007/BF01556677. Erratum: Z Phys C47:676 (1990). https://doi.org/10.1007/BF01552335

  40. Baur U, Hinchliffe I, Zeppenfeld D (1987) Excited quark production at hadron colliders. Intl J Mod Phys A 2:1285. https://doi.org/10.1142/S0217751X87000661

    Article  ADS  Google Scholar 

  41. Baur U, Spira M, Zerwas PM (1990) Excited quark and lepton production at hadron colliders. Phys Rev D 42:815–824. https://doi.org/10.1103/PhysRevD.42.815

    Article  ADS  Google Scholar 

  42. Arkani-Hamed N, Dimopoulos S, Dvali GR (1998) The hierarchy problem and new dimensions at a millimeter. Phys Lett B429:263–272. https://doi.org/10.1016/S0370-2693(98)00466-3, arXiv:hep-ph/9803315 [hep-ph]

  43. Antoniadis I et al (1998) New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys Lett B436:257–263. https://doi.org/10.1016/S0370-2693(98)00860-0, arXiv:hep-ph/9804398 [hep-ph]

  44. Randall L, Sundrum R (1999) A large mass hierarchy from a small extra dimension. Phys Rev Lett 83:3370–3373. https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221 [hep-ph]

  45. Calmet X (ed) (2015) Quantum aspects of black holes. Fundam Theor Phys 178. https://doi.org/10.1007/978-3-319-10852-0

  46. Meade P, Randall L (2008) Black holes and quantum gravity at the LHC. JHEP 05:003. https://doi.org/10.1088/1126-6708/2008/05/003, arXiv:0708.3017 [hep-ph]

  47. UA1 Collaboration (1984) Angular distributions and structure functions from two jet events at the CERN SPS p anti-p collider. Phys Lett B 136:294. https://doi.org/10.1016/0370-2693(84)91164-X

  48. UA1 Collaboration (1986) Measurement of the inclusive jet cross section at the CERN pp collider. In: Phys Lett B 172.3:461–466. https://doi.org/10.1016/0370-2693(86)90290-X, ISSN: 0370-2693

  49. UA1 Collaboration (1988) Two jet mass distributions at the CERN proton-anti-proton collider. Phys Lett B 209:127–134. https://doi.org/10.1016/0370-2693(88)91843-6

  50. UA2 Collaboration (1984) Measurement of jet production properties at the CERN Collider. Phys Lett B 144:283–290. https://doi.org/10.1016/0370-2693(84)91822-7

  51. UA2 Collaboration (1991) A measurement of two-jet decays of the W and Z bosons at the CERN \(\bar{p}p \) collider. Zeitschrift für Phys C Part Fields 49.1:17–28. https://doi.org/10.1007/BF01570793, ISSN: 1431-5858

  52. UA2 Collaboration (1993) A search for new intermediate vector bosons and excited quarks decaying to two-jets at the CERN \(\bar{p}p\) collider. Nucl Phys B 400.1:3–22. https://doi.org/10.1016/0550-3213(93)90395-6, ISSN: 0550-3213

  53. CDF Collaboration (1990) Two-jet invariant mass distribution at \(\sqrt{s}=1.8\) TeV. Phys Rev D 41:1722–1725. https://doi.org/10.1103/PhysRevD.41.1722

  54. CDF Collaboration (1995) Search for new particles decaying to dijets in \(p\bar{p}\) Collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev Lett 74:3538–3543. https://doi.org/10.1103/PhysRevLett.74.3538

  55. CDF Collaboration (1993) Search for quark compositeness, axigluons, and heavy particles using the dijet invariant mass spectrum observed in \(p\bar{p}\) collisions. Phys Rev Lett 71:2542–2546. https://doi.org/10.1103/PhysRevLett.71.2542

  56. CDF Collaboration (1997) Search for new particles decaying to dijets at CDF. Phys Rev D 55:R5263–R5268. https://doi.org/10.1103/PhysRevD.55.R5263

  57. CDF Collaboration (2009) Search for new particles decaying into dijets in proton-antiproton collisions at \(\sqrt{s} = 1.96\) TeV. Phys Rev D 79:112002. https://doi.org/10.1103/PhysRevD.79.112002, arXiv:0812.4036 [hep-ex]

  58. DØ Collaboration (2004) Search for new particles in the two-jet decay channel with the DØ detector. Phys Rev D 69:111101. https://doi.org/10.1103/PhysRevD.69.111101

  59. DØ Collaboration (2009) Measurement of dijet angular distributions at \(\sqrt{s} = 1.96\) TeV and searches for quark compositeness and extra spatial dimensions. Phys Rev Lett 103:191803. https://doi.org/10.1103/PhysRevLett.103.191803, arXiv:0906.4819 [hep-ex]

  60. ATLAS Collaboration (2010) Search for new particles in two-jet final states in 7 TeV proton- proton collisions with the ATLAS detector at the LHC. Phys Rev Lett 105:161801. https://doi.org/10.1103/PhysRevLett.105.161801, arXiv:1008.2461 [hep-ex]

  61. ATLAS Collaboration (2011) Search for quark contact interactions in dijet angular distributions in pp collisions at \(\sqrt{s} = 7\) TeV measured with the ATLAS detector. Phys Lett B 694:327. https://doi.org/10.1016/j.physletb.2010.021, arXiv:1009.5069 [hep-ex]

  62. Collaboration CMS (2010) Search for dijet resonances in 7 TeV pp collisions at CMS. Phys Rev Lett 105:211801. https://doi.org/10.1103/PhysRevLett.105.211801

    Article  Google Scholar 

  63. CMS Collaboration (2010) Search for quark compositeness with the dijet centrality ratio in 7 TeV pp collisions. Phys Rev Lett 105:262001. https://doi.org/10.1103/PhysRevLett.105.262001, arXiv:1010.4439 [hep-ex]

  64. CMS Collaboration (2011) Measurement of dijet angular distributions and search for quark compositiveness in pp Collisions at \(\sqrt{s} = 7\) TeV. Phys Rev Lett 106:201804. https://doi.org/10.1103/PhysRevLett.106.201804, arXiv:1102.2020 [hep-ex]

  65. CMS Collaboration (2011) Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS. Phys Lett B 704:123. https://doi.org/10.1016/j.physletb.2011.09.015, arXiv:1107.4771 [hep-ex]

  66. ATLAS Collaboration (2011) Search for new physics in dijet mass and angular distributions in pp collisions at \(\sqrt{s} = 7\) TeV measured with the ATLAS detector. New J Phys 13:053044. https://doi.org/10.1088/1367-2630/13/5/053044, arXiv:1103.3864 [hep-ex]

  67. ATLAS Collaboration (2012) Search for new physics in the dijet mass distribution using 1 \(fb^{-1}\) of pp collision data at \(\sqrt{s} = 7\) TeV collected by the ATLAS detector. Phys Lett B 708:37–54. https://doi.org/10.1016/j.physletb.2012.01.035, arXiv:1108.6311 [hep-ex]

  68. ATLAS Collaboration (2013) ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \(\sqrt{s} = 7\) TeV. JHEP 1301:029. https://doi.org/10.1007/JHEP01(2013)029, arXiv:1210.1718 [hep-ex]

  69. CMS Collaboration (2013) Search for narrow resonances using the dijet mass spectrum in pp collisions at \(\sqrt{s} = 8 \)TeV. Phys Rev D 87:114015. https://doi.org/10.1103/PhysRevD.87.114015, arXiv:1302.4794 [hep-ex]

  70. ATLAS Collaboration (2015) Search for new phenomena in the dijet mass distribution using pp collision data at \(\sqrt{s} = 8\) TeV with the ATLAS detector. Phys Rev D 91:052007. https://doi.org/10.1103/PhysRevD.91.052007, arXiv:1407.1376 [hep-ex]

  71. ATLAS Collaboration (2015) Baryonic Z’ summary plot. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2013-11/figaux_10.png

  72. Boveia A (2017) Private communication

    Google Scholar 

  73. CMS Collaboration (2016) Search for narrow resonances in dijet final states at \(\sqrt{s} = 8\) TeV with the novel CMS technique of data scouting. Phys Rev Lett 117.3:031802. https://doi.org/10.1103/PhysRevLett.117.031802, arXiv:1604.08907 [hep-ex]

  74. Rohatgi A (2017) WebPlotDigitizer - web based plot digitizer version 3.11. http://arohatgi.info/WebPlotDigitizer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Audrey Beresford .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beresford, L.A. (2018). Theoretical Background. In: Searches for Dijet Resonances. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97520-7_2

Download citation

Publish with us

Policies and ethics