Skip to main content

Immunostains: Antibody Index – Solid Tumors

  • Chapter
  • First Online:
  • 3006 Accesses

Abstract

Common Multipurpose Immunostains at a Glance

By Marina K Baine, Justin A. Bishop, Natasha Rekhtman

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matoso A, Singh K, Jacob R, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol. 2010;18:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang PJ, Gao HG, Pasha TL, Litzky L, Livolsi VA. TTF-1 expression in ovarian and uterine epithelial neoplasia and its potential significance, an immunohistochemical assessment with multiple monoclonal antibodies and different secondary detection systems. Int J Gynecol Pathol. 2009;28:10–8.

    Article  PubMed  Google Scholar 

  3. Tran L, Mattsson JS, Nodin B, et al. Various antibody clones of napsin A, thyroid transcription factor 1, and p40 and comparisons with cytokeratin 5 and p63 in histopathologic diagnostics of non-small cell lung carcinoma. Appl Immunohistochem Mol Morphol. 2016;24:648–59.

    Article  CAS  PubMed  Google Scholar 

  4. Klebe S, Swalling A, Jonavicius L, Henderson DW. An immunohistochemical comparison of two TTF-1 monoclonal antibodies in atypical squamous lesions and sarcomatoid carcinoma of the lung, and pleural malignant mesothelioma. J Clin Pathol. 2016;69:136–41.

    Article  CAS  PubMed  Google Scholar 

  5. Toriyama A, Mori T, Sekine S, et al. Utility of PAX8 mouse monoclonal antibody in the diagnosis of thyroid, thymic, pleural and lung tumours: a comparison with polyclonal PAX8 antibody. Histopathology. 2014;65:465–72.

    Article  PubMed  Google Scholar 

  6. Ordonez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19:140–51.

    Article  CAS  PubMed  Google Scholar 

  7. Rekhtman N, Kazi S. Nonspecific reactivity of polyclonal napsin a antibody in mucinous adenocarcinomas of various sites: a word of caution. Arch Pathol Lab Med. 2015;139:434–6.

    Article  PubMed  Google Scholar 

  8. Acs B, Kulka J, Kovacs KA, et al. Comparison of 5 Ki-67 antibodies regarding reproducibility and capacity to predict prognosis in breast cancer: does the antibody matter? Hum Pathol. 2017;65:31–40.

    Article  CAS  PubMed  Google Scholar 

  9. Focke CM, Burger H, van Diest PJ, et al. Interlaboratory variability of Ki67 staining in breast cancer. Eur J Cancer. 2017;84:219–27.

    Article  CAS  PubMed  Google Scholar 

  10. Hammond ME, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134:e48–72.

    CAS  PubMed  Google Scholar 

  11. Dabbs DJ, Landreneau RJ, Liu Y, et al. Detection of estrogen receptor by immunohistochemistry in pulmonary adenocarcinoma. Ann Thorac Surg. 2002;73:403–5; discussion 6.

    Article  PubMed  Google Scholar 

  12. Hakima L, Schlesinger K, Sunkara J, Karabakhtsian RG. Differential expression of various clones of estrogen receptor in cell block preparation of lung adenocarcinoma. Diagn Cytopathol. 2018;46:390–4.

    Article  PubMed  Google Scholar 

  13. Gomez-Fernandevvz C, Mejias A, Walker G, Nadji M. Immunohistochemical expression of estrogen receptor in adenocarcinomas of the lung: the antibody factor. Appl Immunohistochem Mol Morphol. 2010;18:137–41.

    Google Scholar 

  14. Arnold MA, Schoenfield L, Limketkai BN, Arnold CA. Diagnostic pitfalls of differentiating desmoplastic small round cell tumor (DSRCT) from Wilms tumor (WT): overlapping morphologic and immunohistochemical features. Am J Surg Pathol. 2014;38:1220–6.

    Article  PubMed  Google Scholar 

  15. Murphy AJ, Bishop K, Pereira C, et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum Pathol. 2008;39:1763–70.

    Article  CAS  PubMed  Google Scholar 

  16. Stockman DL, Hornick JL, Deavers MT, et al. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol. 2014;27:496–501.

    Article  CAS  PubMed  Google Scholar 

  17. Miettinen M, Wang Z, Sarlomo-Rikala M, et al. ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol. 2013;37:1580–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taheri D, Zahavi DJ, Del Carmen RM, et al. For staining of ALK protein, the novel D5F3 antibody demonstrates superior overall performance in terms of intensity and extent of staining in comparison to the currently used ALK1 antibody. Virchows Arch. 2016;469:345–50.

    Article  CAS  PubMed  Google Scholar 

  19. Ostler DA, Prieto VG, Reed JA, et al. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol. 2010;23:567–73.

    Article  CAS  PubMed  Google Scholar 

  20. Muthusamy K, Halbert G, Roberts F. Immunohistochemical staining for adipophilin, perilipin and TIP47. J Clin Pathol. 2006;59:1166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan BC, Gong C, Song J, et al. Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am J Surg Pathol. 2010;34:1147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sheffield BS, Hwang HC, Lee AF, et al. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am J Surg Pathol. 2015;39:977–82.

    Article  PubMed  Google Scholar 

  23. Andrici J, Gill AJ, Hornick JL. Next generation immunohistochemistry: emerging substitutes to genetic testing? Semin Diagn Pathol. 2018;35:161–9.

    Article  PubMed  Google Scholar 

  24. Conlon N, Silva A, Guerra E, et al. Loss of SMARCA4 expression is both sensitive and specific for the diagnosis of small cell carcinoma of ovary, hypercalcemic type. Am J Surg Pathol. 2016;40:395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shain AH, Giacomini CP, Matsukuma K, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109:E252–9.

    Article  CAS  PubMed  Google Scholar 

  26. Strehl JD, Wachter DL, Fiedler J, et al. Pattern of SMARCB1 (INI1) and SMARCA4 (BRG1) in poorly differentiated endometrioid adenocarcinoma of the uterus: analysis of a series with emphasis on a novel SMARCA4-deficient dedifferentiated rhabdoid variant. Ann Diagn Pathol. 2015;19:198–202.

    Article  PubMed  Google Scholar 

  27. Herpel E, Rieker RJ, Dienemann H, et al. SMARCA4 and SMARCA2 deficiency in non-small cell lung cancer: immunohistochemical survey of 316 consecutive specimens. Ann Diagn Pathol. 2017;26:47–51.

    Article  PubMed  Google Scholar 

  28. Agaimy A, Fuchs F, Moskalev EA, et al. SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1(neg)/CK7(pos)/HepPar-1(pos) immunophenotype. Virchows Arch. 2017;471:599–609.

    Article  CAS  PubMed  Google Scholar 

  29. Agaimy A, Daum O, Markl B, et al. SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 2016;40:544–53.

    Article  PubMed  Google Scholar 

  30. Doyle LA, Fletcher CD, Hornick JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol. 2016;40:94–102.

    Article  PubMed  Google Scholar 

  31. Miettinen M. Immunohistochemistry of soft tissue tumours – review with emphasis on 10 markers. Histopathology. 2014;64:101–18.

    Article  PubMed  Google Scholar 

  32. Guo Y, Yuan F, Deng H, et al. Paranuclear dot-like immunostaining for CD99: a unique staining pattern for diagnosing solid-pseudopapillary neoplasm of the pancreas. Am J Surg Pathol. 2011;35:799–806.

    Article  PubMed  Google Scholar 

  33. Chen ZE, Lin F. Application of immunohistochemistry in gastrointestinal and liver neoplasms: new markers and evolving practice. Arch Pathol Lab Med. 2015;139:14–23.

    Article  PubMed  Google Scholar 

  34. Lin F, Shi J, Zhu S, et al. Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 2014;138:1015–26.

    Article  PubMed  Google Scholar 

  35. Thway K, Flora R, Shah C, Olmos D, Fisher C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am J Surg Pathol. 2012;36:462–9.

    Article  PubMed  Google Scholar 

  36. Bing Z, Pasha T, Tomaszewski JE, Zhang P. CDX2 expression in yolk sac component of testicular germ cell tumors. Int J Surg Pathol. 2009;17:373–7.

    Article  PubMed  Google Scholar 

  37. Terry J, Calicchio ML, Rodriguez-Galindo C, Perez-Atayde AR. Immunohistochemical expression of CRX in extracranial malignant small round cell tumors. Am J Surg Pathol. 2012;36:1165–9.

    Article  PubMed  Google Scholar 

  38. Lau SK, Weiss LM, Chu PG. D2-40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol. 2007;20:320–5.

    Article  CAS  PubMed  Google Scholar 

  39. Kalof AN, Cooper K. D2-40 immunohistochemistry–so far! Adv Anat Pathol. 2009;16:62–4.

    Article  CAS  PubMed  Google Scholar 

  40. Ordonez NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol. 2006;13:83–8.

    Article  CAS  PubMed  Google Scholar 

  41. Miettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol. 2009;33:1401–8.

    Article  PubMed  Google Scholar 

  42. Carter CS, Skala SL, Chinnaiyan AM, et al. Immunohistochemical characterization of Fumarate Hydratase (FH) and Succinate Dehydrogenase (SDH) in cutaneous leiomyomas for detection of familial cancer syndromes. Am J Surg Pathol. 2017;41:801–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buelow B, Cohen J, Nagymanyoki Z, et al. Immunohistochemistry for 2-Succinocysteine (2SC) and Fumarate Hydratase (FH) in cutaneous leiomyomas may aid in identification of patients with HLRCC (Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome). Am J Surg Pathol. 2016;40:982–8.

    Article  PubMed  Google Scholar 

  44. Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chlapek P, Zitterbart K, Kren L, et al. Uniformity under in vitro conditions: changes in the phenotype of cancer cell lines derived from different medulloblastoma subgroups. PloS one. 2017;12:e0172552.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Egashira N, Takekoshi S, Takei M, Teramoto A, Osamura RY. Expression of FOXL2 in human normal pituitaries and pituitary adenomas. Mod Pathol. 2011;24:765–73.

    Article  CAS  PubMed  Google Scholar 

  47. Kandil DH, Cooper K. Glypican-3: a novel diagnostic marker for hepatocellular carcinoma and more. Adv Anat Pathol. 2009;16:125–9.

    Article  CAS  PubMed  Google Scholar 

  48. Vivero M, Doyle LA, Fletcher CD, Mertens F, Hornick JL. GRIA2 is a novel diagnostic marker for solitary fibrous tumour identified through gene expression profiling. Histopathology. 2014;65:71–80.

    Article  PubMed  Google Scholar 

  49. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33:542–50.

    Article  PubMed  Google Scholar 

  50. Yang Z, Klimstra DS, Hruban RH, Tang LH. Immunohistochemical characterization of the origins of metastatic well-differentiated neuroendocrine tumors to the liver. Am J Surg Pathol. 2017;41:915–22.

    Article  PubMed  Google Scholar 

  51. Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of langerin in langerhans cell histiocytosis and non-langerhans cell histiocytic disorders. Am J Surg Pathol. 2008;32:615–9.

    Article  PubMed  Google Scholar 

  52. Korshunov A, Ryzhova M, Jones DT, et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 2012;124:875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rao S, Rajeswarie RT, Chickabasaviah Yasha T, et al. LIN28A, a sensitive immunohistochemical marker for Embryonal Tumor with Multilayered Rosettes (ETMR), is also positive in a subset of Atypical Teratoid/Rhabdoid Tumor (AT/RT). Childs Nerv Syst. 2017;33:1953–9.

    Article  PubMed  Google Scholar 

  54. Zafrakas M, Petschke B, Donner A, et al. Expression analysis of mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2) in more than 300 human tumors and matching normal tissues reveals their co-expression in gynecologic malignancies. BMC Cancer. 2006;6:88.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127:103–13.

    Article  CAS  PubMed  Google Scholar 

  56. Weaver J, Rao P, Goldblum JR, et al. Can MDM2 analytical tests performed on core needle biopsy be relied upon to diagnose well-differentiated liposarcoma? Mod Pathol. 2010;23:1301–6.

    Article  CAS  PubMed  Google Scholar 

  57. Kashima T, Halai D, Ye H, et al. Sensitivity of MDM2 amplification and unexpected multiple faint alphoid 12 (alpha 12 satellite sequences) signals in atypical lipomatous tumor. Mod Pathol. 2012;25:1384–96.

    Article  CAS  PubMed  Google Scholar 

  58. Dujardin F, Binh MB, Bouvier C, et al. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol. 2011;24:624–37.

    Article  CAS  PubMed  Google Scholar 

  59. Doyle LA, Moller E, Dal Cin P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35:733–41.

    Article  PubMed  Google Scholar 

  60. Doyle LA, Wang WL, Dal Cin P, et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol. 2012;36:1444–51.

    Article  PubMed  Google Scholar 

  61. Mawas AS, Amatya VJ, Kushitani K, et al. MUC4 immunohistochemistry is useful in distinguishing epithelioid mesothelioma from adenocarcinoma and squamous cell carcinoma of the lung. Sci Rep. 2018;8:134.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shibuya R, Matsuyama A, Nakamoto M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch. 2014;465:599–605.

    Article  CAS  PubMed  Google Scholar 

  63. McCuiston A, Bishop JA. Usefulness of NKX2.2 Immunohistochemistry for distinguishing ewing sarcoma from other sinonasal small round blue cell tumors. Head Neck Pathol. 2018;12:89–94.

    Article  PubMed  Google Scholar 

  64. Ligon KL, Alberta JA, Kho AT, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63:499–509.

    Article  CAS  PubMed  Google Scholar 

  65. Bishop JA, Teruya-Feldstein J, Westra WH, et al. p40 (DeltaNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol. 2012;25:405–15.

    Article  CAS  PubMed  Google Scholar 

  66. Gill AJ, Clarkson A, Gimm O, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol. 2006;30:1140–9.

    Article  PubMed  Google Scholar 

  67. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21:192–200.

    Article  CAS  PubMed  Google Scholar 

  68. Bishop JA, Sharma R, Westra WH. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol. 2011;42:1873–7.

    Article  CAS  PubMed  Google Scholar 

  69. Weissferdt A, Moran CA. Pax8 expression in thymic epithelial neoplasms: an immunohistochemical analysis. Am J Surg Pathol. 2011;35:1305–10.

    Article  PubMed  Google Scholar 

  70. Lee JP, Hung YP, O’Dorisio TM, et al. Examination of PHOX2B in adult neuroendocrine neoplasms reveals relatively frequent expression in phaeochromocytomas and paragangliomas. Histopathology. 2017;71:503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hung YP, Lee JP, Bellizzi AM, Hornick JL. PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours. Histopathology. 2017;71:786–94.

    Article  PubMed  Google Scholar 

  72. McDonald WC, Banerji N, McDonald KN, et al. Steroidogenic factor 1, pit-1, and adrenocorticotropic hormone: a rational starting place for the immunohistochemical characterization of pituitary adenoma. Arch Pathol Lab Med. 2017;141:104–12.

    Article  CAS  PubMed  Google Scholar 

  73. Katabi N, Xu B, Jungbluth AA, et al. PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: a comparative study with PLAG1 genetic abnormalities. Histopathology. 2018;72:285–93.

    Article  PubMed  Google Scholar 

  74. Sheridan T, Herawi M, Epstein JI, Illei PB. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am J Surg Pathol. 2007;31:1351–5.

    Article  PubMed  Google Scholar 

  75. Epstein JING. Biopsy interpretation of the prostate, Biopsy Interpretation Series. 4th ed. Philadelphia Fourth edition (September 18, 2007): LWW; 2008. p. 368.

    Google Scholar 

  76. Conner JR, Hornick JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology. 2013;63:36–49.

    Article  PubMed  Google Scholar 

  77. Gopalan A, Dhall D, Olgac S, et al. Testicular mixed germ cell tumors: a morphological and immunohistochemical study using stem cell markers, OCT3/4, SOX2 and GDF3, with emphasis on morphologically difficult-to-classify areas. Mod Pathol. 2009;22:1066–74.

    Article  CAS  PubMed  Google Scholar 

  78. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32:1291–8.

    Article  PubMed  Google Scholar 

  79. Elston MS, Meyer-Rochow GY, Conaglen HM, et al. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase-deficient pheochromocytomas and paragangliomas. Hum Pathol. 2015;46:390–6.

    Article  CAS  PubMed  Google Scholar 

  80. Menke JR, Raleigh DR, Gown AM, et al. Somatostatin receptor 2a is a more sensitive diagnostic marker of meningioma than epithelial membrane antigen. Acta Neuropathol. 2015;130:441–3.

    Article  PubMed  Google Scholar 

  81. Doyle LA, Tao D, Marino-Enriquez A. STAT6 is amplified in a subset of dedifferentiated liposarcoma. Mod Pathol. 2014;27:1231–7.

    Article  CAS  PubMed  Google Scholar 

  82. Argani P, Aulmann S, Illei PB, et al. A distinctive subset of PEComas harbors TFE3 gene fusions. Am J Surg Pathol. 2010;34:1395–406.

    Article  PubMed  Google Scholar 

  83. Hung YP, Fletcher CD, Hornick JL. Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol. 2016;29:1324–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Rekhtman MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rekhtman, N., Baine, M.K., Bishop, J.A. (2019). Immunostains: Antibody Index – Solid Tumors. In: Quick Reference Handbook for Surgical Pathologists. Springer, Cham. https://doi.org/10.1007/978-3-319-97508-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97508-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97507-8

  • Online ISBN: 978-3-319-97508-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics