Skip to main content

PCM Current Applications and Thermal Performance

  • Chapter
  • First Online:
Thermal Energy Storage with Phase Change Materials

Abstract

The use of phase change materials (PCM) in the buildings is a possibility to achieve the reduction of energy dependency as it allows the use of latent heat storage to increase the thermal inertia without significantly increasing the building weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Kosny, T. Stovall, S. Shrestha, D. Yarbrough, Theoretical and experimental thermal performance analysis of complex thermal storage membrane containing bio-based phase-change material (PCM). Proc. Build. XI, 1–13 (2010)

    Google Scholar 

  2. B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Article  Google Scholar 

  3. H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM. An Up To Date Introduction into Basics and Application (Springer, Berlin, 2008)

    Google Scholar 

  4. C.A.P. Santos, L. Matias, Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios. ICT Informações Cientificas e Técnicas, Edifícios - Ite 50, Edited by Laboratório Nacional de Engenharia Civil. LNEC, Lisboa (2007)

    Google Scholar 

  5. Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)

    Article  Google Scholar 

  6. S. Monteiro da Silva, M. Almeida, Using PCM to Improve Building’s Thermal Performance. 2nd International Conference on Sustainable Energy Storage, 19–21 June, Trinity College Dublin, Ireland

    Google Scholar 

  7. S. Scalat, D. Banu, D. Hawes, J. Paris, F. Haghighata, D. Feldman, Full scale thermal testing of latent heat storage in wallboard. Solar Energy Mater Solar Cells 44, 49–61 (1996)

    Article  Google Scholar 

  8. R.J. Kedl, T.K. Stovall, Activities in Support of the Wax-Impregnated Wallboard Concept. US Department of Energy: Thermal Energy Storage Researches Activity Review, New Orleans, LA, USA (1989)

    Google Scholar 

  9. D.A. Neeper, Solar Buildings Research: What Are the Best Directions? 213–219 (1986)

    Google Scholar 

  10. V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy 11, 1146–1166 (2007)

    Article  Google Scholar 

  11. B. Farouk, S.I. Guceri. Tromb–Michal Wall Using a Phase Change Material (1979)

    Google Scholar 

  12. K. Peippo, P. Kauranen, P.D. Lund, Multicomponent PCM Wall Optimized for Passive Solar Heating. Energy Build. 17, 259–270 (1991)

    Article  Google Scholar 

  13. D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials 22, 231–242 (1991)

    Article  Google Scholar 

  14. D. Feldman, M.A. Khan, D. Banu, Energy Storage Composite with an Organic Phase Change Material (1989), pp. 333–341

    Google Scholar 

  15. D. Feldman, M. Shapiro, D. Banu, C.J. Fuks, Fatty Acids and Their Mixtures as Phase Change Materials for Thermal Energy Storage (1989), pp. 201–216

    Google Scholar 

  16. M.M. Shapiro, D. Feldman, D. Hawes, D. Banu, PCM Thermal Storage in Wallboard (1987), pp. 48–58

    Google Scholar 

  17. M.M. Shapiro, Development of the Enthalpy Storage Materials, Mixture of Methyl Stearate and Methyl Palmitate (1989)

    Google Scholar 

  18. D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)

    Article  Google Scholar 

  19. D.A. Neeper, Potential Benefits of Distributed PCM Thermal Storage. Proceedings of the 14th National Passive Solar Conference, 19–22 June 1989, Denver, pp. 283–288

    Google Scholar 

  20. D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)

    Article  Google Scholar 

  21. D. Heim, J.A. Clarke, Numerical modelling and thermal simulation of PCM–gypsum com-posites with ESP-r. Energy Build. 36(8), 795–805 (2004)

    Article  Google Scholar 

  22. J. Paris, M. Falardeau, C. Villeneuve, Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15, 85–93 (1993)

    Article  Google Scholar 

  23. A.E. Rudd, Phase change material wallboard for distributed storage in buildings. Trans.-Am. Soc. Heating Refrigerating Air Conditioning Eng. 339–346 (1993)

    Google Scholar 

  24. M.W. Babich, R. Benrashid R, R.D. Mounts, DSC studies of new energy storage materials. Part 3. Thermal and flammability studies. Thermochimica Acta, 193–200 (1994)

    Google Scholar 

  25. D. Banu, D. Feldman, F. Haghighat, J. Paris, D. Hawes, Energy-storing wallboard: flammability tests. J. Mat. Civil Eng. 10, 98–105 (1998)

    Article  Google Scholar 

  26. F. Kuznik, J. Virgone, Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build. 41, 561–570 (2009)

    Article  Google Scholar 

  27. A. Oliver, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build. 48, 1–7 (2012)

    Article  Google Scholar 

  28. H. Liu, B.A. Hanzim, Performance of phase change material boards under natural convection. Build. Environ. 44, 1788–1793 (2009)

    Article  Google Scholar 

  29. L. Shilei, F. Guohui, Z. Neng, D. Li, Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build. 39, 1088–1091 (2007)

    Article  Google Scholar 

  30. L. Shilei, F. Guohui, Z. Neng, Impact of phase change wall room on indoor thermal environment in winter. Energy Build. 38, 18–24 (2006)

    Article  Google Scholar 

  31. C. Voelker, O. Kornadt, M. Ostry, Temperature reduction due to the application of phase change materials. Energy Build. 937–944 (2008)

    Google Scholar 

  32. F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew. Energy 1458–1462 (2011)

    Google Scholar 

  33. F. Kuznik, J. Virgone, Experimental assessment of phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)

    Article  Google Scholar 

  34. A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 405–410 (1997)

    Google Scholar 

  35. P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Microencapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 89(2–3), 297–306 (2005)

    Article  Google Scholar 

  36. S.G. Jeong, S.J. Chang, W. Seunghwan, J. Lee, S. Kim, Energy performance evaluation of heat-storage gypsum board with hybrid SSPCM composite. J. Indus. Eng. Chem 237–243 (2017)

    Google Scholar 

  37. B. Chhugani, F. Klinker, H. Weinlaeder, M. Reim, Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms. Energy Procedia 122, 625–630 (2017)

    Article  Google Scholar 

  38. M. Pomianowski, P. Heiselber, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)

    Article  Google Scholar 

  39. I. Cerón, J. Neila, M. Khayet, Experimental tile with phase change materials (PCM) for building use. Energy Build. 43, 1869–1874 (2011)

    Article  Google Scholar 

  40. D.C. Hittle, Phase Change Materials in Floor Tiles for Thermal Energy Storage (2002)

    Google Scholar 

  41. R. Novais, G. Ascensão, M.P. Seabra, J.A. Labrincha, Lightweight dense/porous PCM-ceramic tiles for indoor temperature control. Energy Build. 108, 205–214 (2015)

    Google Scholar 

  42. T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: an overview. Construct. Build. Mat. 55–62 (2013)

    Google Scholar 

  43. L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of mi-croencapsulated PCM in concrete walls for energy savings. Energy Build. 113–119 (2007)

    Google Scholar 

  44. G. Zhou, M. Pang, Experimental investigations on the performance of a collector–storage wall system using phase change materials. Energy Convers. Manag. 178–188 (2015)

    Google Scholar 

  45. A.K. Sharma, N.K. Bansal, M.S. Sodha, V. Gupta, Vary-therm wall for cooling/heating of buildings in composite climate. Int. J. Energy Res. 733–739 (1989)

    Google Scholar 

  46. L. Zalewski, M. Chantant, S. Lassue, B. Duthoit, Experimental thermal study of a solar wall of composite type. Energy Build. 7–18 (1997)

    Google Scholar 

  47. L. Zalewski, S. Lassue, B. Duthoit, M. Butez, Study of solar walls, validating a simulation model. Build. Environ. 109–112 (2002)

    Google Scholar 

  48. J. Jie, Y. Hua, H. Wei, P. Gang, L. Jianping, J. Bin, Modeling of a novel Trombe wall with PV cells.2007. Build. Environ. 1544–1552 (2007)

    Google Scholar 

  49. L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, D. Rousse, Experimental study of small-scale solar wall integrating phase change material. Solar Energy 208–219 (2012)

    Google Scholar 

  50. E. Leang, P. Tittelein, L. Zalewski, S. Lassue, Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 122, 1009–1014 (2017)

    Article  Google Scholar 

  51. F. Stazi, C. Bonfigli, E. Tomassoni, C. Di Perna, P. Munafò, The effect of high thermal insulation on high thermal mass: is the dynamic behaviour of traditional envelopes in Mediterranean climates still possible? Energy Build. 367–383 (2015)

    Google Scholar 

  52. J. Onishi, H. Soeda, M. Mizuno, Numerical study on a low energy architecture based upon distributed heat storage system. Renew. Energy 61–66 (2001)

    Google Scholar 

  53. U. Stritih, P. Novak, Solar heat storage wall for building ventilation. Renew. Energy 268–271 (1996)

    Google Scholar 

  54. H. Manz, P.W. Egolf, P. Suter, A. Goetzberger, TIM-PCM external wall system for solar space heating and daylighting. Solar Energy 369–379 (1997)

    Google Scholar 

  55. Telkes M. Trombe wall with phase change storage material. 1978

    Google Scholar 

  56. M. Telkes, Thermal energy storage in salt hydrates. Solar Mat. Sci. 381–393 (1980)

    Google Scholar 

  57. Telkes M. Thermal storage for solar heating and cooling. 1975

    Google Scholar 

  58. G.L. Askew, Solar Heating Utilization A Paraffin’s Phase Change Material (1978)

    Google Scholar 

  59. C.J. Swet, Phase Change Storage in Passive Solar Architecture (1980), pp 282–286

    Google Scholar 

  60. A.A. Ghoneim, S.A. Kllein, J.A. Duffie, Analysis of collector—storage building walls using phase change materials. Solar Energy 237–242 (1991)

    Google Scholar 

  61. S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal performance of a non-A/C building with PCM thermal storage wall. Energy Convers. Manage. 15–20 (1985)

    Google Scholar 

  62. T. Knowles, Proportioning composites for efficient thermal storage walls. Solar Energy 319–326 (1983)

    Google Scholar 

  63. L. Bourdeau, A. Jaffrin, Actual Performance of a Latent Heat Diode Wall (1979)

    Google Scholar 

  64. L. Bourdeau, A. Jaffrin, A. Moisan, Captage et Stockage d’ànergie Solaire dans l’Habitat par le Moyen de Mur Diode à Chaleur Latente 559–568 (1980)

    Google Scholar 

  65. L. Bourdeau, Utilisation d’un Materiau à Changement de Phase Dans un Mur Trombe sans Thermocirculation (1982), pp 633–642

    Google Scholar 

  66. D.K. Benson, J.D. Webb, R.W. Burrows, J.D.O. McFadden, C. Christensen (1985) Materials Research for Passive Solar Systems: Solid State Phase-Change Materials (1985)

    Google Scholar 

  67. D. Buddhi, S.D. Sharma, Measurements of transmittance of solar radiation through stearic acid: latent heat storage material. Energy Convers. Manag. 1979–1984 (1999)

    Google Scholar 

  68. U. Stritih, P. Novak, Solar heat storage wall for building ventilation, In: World renewable energy congress (WREC). Renew. Energy. 268–271 (1996)

    Google Scholar 

  69. D. Sun, L. Wang, Research on heat transfer performance of passive solar collector-storage wall system with phase change materials. Energy Build. 199, 183–188 (2016)

    Article  Google Scholar 

  70. F. Fiorito, Trombe walls for lightweight buildings in temperate and hot climates: exploring the use of phase-change materials for performances improvement. Energy Procedia 1110–1119 (2012)

    Google Scholar 

  71. Y.A. Kara, A. Kurnuc, Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study. Solar Energy 2432–2442 (2012)

    Google Scholar 

  72. Y.C. Li, S.L. Liu, Experimental study on thermal performance of a solar chimney combined with PCM. Appl. Energy 114, 172–178 (2014)

    Article  Google Scholar 

  73. Hu Z, He W, Ji J, Zhang S, Hu Z, He W, A review on the application of Trombe wall system in buildings. Renew. Sustain. Energy Rev. 976–987 (2017)

    Google Scholar 

  74. Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Literature review on the use of phase change materials in glazing and shading solutions. Renew. Sustain. Energy Rev. 53, 515–535 (2016)

    Article  Google Scholar 

  75. F. Cappelletti, A. Prada, P. Romagnoni, A. Gasparella, Passive performance of glazed components in heating and cooling of an open-space office under controlled indoor thermal comfort. Build. Environ. 131–144 (2014)

    Google Scholar 

  76. K.A.R. Ismail, C.T. Salinas, J.R. Henriquez, Comparison between PCM filled glass windows and absorbing gas filled windows. Energy Build. 710–719 (2008)

    Google Scholar 

  77. http://www.inglas.eu/glass/company.html. Accessed 17.11.2017

  78. F. Goia, M. Perino, V. Serra, Improving thermal comfort conditions by means of PCM glazing systems. Energy Build. 442–452 (2013)

    Google Scholar 

  79. L. Jain, S.D. Sharma, Phase change materials for day lighting and glazed insulation in buildings. J. Eng. Sci. Technol. 322–327 (2009)

    Google Scholar 

  80. H. Weinläder, A. Beck, J. Fricke, PCM-facade-panel for daylighting and room heating. Solar Energy 177–186 (2005)

    Google Scholar 

  81. F. Goia, M. Perino, V. Serra, Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy 217–233 (2014)

    Google Scholar 

  82. S. Grynning, F. Goia, E. Rognvik, B. Time, Possibilities for characterization of a PCM window system using large scale measurements. Int. J. Sustain. Built. Environ. 56–64 (2013)

    Google Scholar 

  83. S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of- the-art review and future research opportunities. J. Sustain. Built Environ. 94, 150–176 (2015)

    Google Scholar 

  84. Alawadhi E.M, Using phase change materials in window shutter to reduce the solar heat gain. Energy Build. 421–429 (2012)

    Google Scholar 

  85. D. Buddhi. H.S. Mishra, A. Sharma, Thermal performance studies of a test cell having a PCM window in south direction. IEA, ECESIA Annex 17 (2003)

    Google Scholar 

  86. Mehling Harald, Strategic Project ‘‘Innovative PCM-Technology’’—Results and Future Perspectives, 8th Expert Meeting and Work Shop (Kizkalesi, Turkey, 2004)

    Google Scholar 

  87. N. Soares, J.J. Costa, A. Samagaio, R. Vicente, Numerical evaluation of a phase change material—shutter using solar energy for winter nighttime indoor heating. J. Build. Phys. 367–394 (2014)

    Google Scholar 

  88. L. Shuhong, S. Gaofeng, Z. Kaikai, Z. Xiaosong, Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM. Sustain. Cities. Soc. 15–22 (2016)

    Google Scholar 

  89. C. Liu, Y. Zheng, D. Li, H. Qi, X. Liu, A model to determine thermal performance of a non-ventilated double glazing unit with PCM and experimental validation. Procedia Eng. 293–300 (2016)

    Google Scholar 

  90. G.M. Gomes, A.J. Santos, M.A. Rodrigues. Solar and visible optical properties of glazing systems with venetian blinds: numerical, experimental and blind control study. Build. Environ. 47–59 (2014)

    Google Scholar 

  91. Silva Tiago, Vicente Romeu, Amaral Cláudia, Figueiredo António, Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis. Appl. Energy 179, 515–535 (2016)

    Google Scholar 

  92. Silva Tiago, Vicente Romeu, Rodrigues Fernanda, Samagaio António, Development of a window shutter with phase change materials: full scale outdoor experimental approach. Energy Build. 88, 110–121 (2015)

    Article  Google Scholar 

  93. Silva Tiago, Vicente Romeu, Soares Nelson, Ferreira Victor, Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive con-struction solution. Energy Build. 49, 235–245 (2012)

    Article  Google Scholar 

  94. Silva Tiago, Vicente Romeu, Amaral Cláudia, Samagaio António, Cardoso Claudino, Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng. 84, 246–256 (2015)

    Article  Google Scholar 

  95. A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 42, 534–540 (2010)

    Article  Google Scholar 

  96. A.V. Sá, M. Azenha, H. Sousa, A. Samagaio, Thermal enhancement of plastering mortars with phase change materials: experimental and numerical approach. Energy Build. 49, 16–27 (2012)

    Article  Google Scholar 

  97. H.J. Alqallaf, E.M. Alawadhi, Concrete roof with cylindrical holes containing PCM to reduce the heat gain 73–80 (2013)

    Google Scholar 

  98. L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new compo-nent with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)

    Article  Google Scholar 

  99. X. Xu, Y. Zhang, K. Ling, H. Di, R. Yang, Modeling and simulation on thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 37, 1084–1091 (2005)

    Article  Google Scholar 

  100. A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol. Energy 85, 1007–1020 (2011)

    Article  Google Scholar 

  101. L. Royon, L. Karim, A. Bontemps, Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy Build. 63, 29–35 (2013)

    Article  Google Scholar 

  102. L. Royon, L. Karim, A. Bontemps, Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings. Energy Build. 82, 385–390 (2014)

    Article  Google Scholar 

  103. R. Ansuini, R. Larghetti, A. Giretti, M. Lemma, Radiant floors integrated with PCM for indoor temperature control. Energy Build. 43, 3019–3026 (2011)

    Article  Google Scholar 

  104. K.L. Huang, G.H. Feng, J.S. Zhang, Experimental and numerical study on phase change material floor in solar water heating system with a new design. Sol. Energy 105, 126–138 (2014)

    Article  Google Scholar 

  105. G.B. Zhou, J. He, Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energ. 138, 648–660 (2015)

    Article  Google Scholar 

  106. M. Zhao, T.T. Zhu, C.N. Wang, H. Chen, Y.W. Zhang, Numerical simulation on the thermal performance of hydraulic floor heating system with phase change materials. Appl. Therm. Eng. 93, 900–907 (2016)

    Article  Google Scholar 

  107. Y. Xia, X.S. Zhang, Experimental research on a double-layer radiant floor system with phase change material under heating mode. Appl. Therm. Eng. 96, 600–606 (2016)

    Article  Google Scholar 

  108. J.F. Belmonte, P. Eguía, A.E. Molina, J.A. Almendros-Ibáñez, Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM). Sustain. Cities Soc. 14, 154–170 (2015)

    Article  Google Scholar 

  109. A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year round thermal management. Energy Build. 40, 193–203 (2008)

    Article  Google Scholar 

  110. J. Kosny, K. Biswas, W. Miller, S. Kriner, Field thermal performance of naturally ventilated solar roof with PCM heat sink. Sol. Energy 86, 2504–2514 (2012)

    Article  Google Scholar 

  111. M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 36, 567–578 (2004)

    Article  Google Scholar 

  112. H. Weinläder, W. Körner, B. Strieder, A ventilated cooling ceiling with integrated latent heat storage—Monitoring results. 65–72 (2014)

    Google Scholar 

  113. J. Kosny, E. Kossecka, A. Brzezinski, A. Tleoubaev, D. Yarbrough, Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs) 122–131 (2012)

    Google Scholar 

  114. Y. Lei, X. Zhang, G. Xu, Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 68, 639–646 (2014)

    Article  Google Scholar 

  115. Xing Jin, Shuanglong Zhang, Xu Xiaodong, Xiaosong Zhang, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)

    Article  Google Scholar 

  116. M.A. Izquierdo-Barrientos, J.F. Belmonte, D. Rodríguez-Sánchez, A.E. Molina, J.A. Al-mendros- Ibáñez, A numerical study of external building walls containing phase change materials (PCM). Appl. Therm. Eng. 47, 73–85 (2012)

    Article  Google Scholar 

  117. Kuznik Frédéric, Virgone Joseph, Experimental assessment of a phase change material for wall building use. Appl. Energy 86, 2038–2046 (2009)

    Article  Google Scholar 

  118. G. Evola, L. Marletta, The effectiveness of PCM wallboards for the energy re-furbishment of lightweight buildings. Energy Procedia 62, 13–21 (2014)

    Google Scholar 

  119. Jin Xing, Zhang Shuanglong, Effects of PCM state on its phase change performance and the thermal performance of building walls. Build. Environ. 81, 334–339 (2014)

    Article  Google Scholar 

  120. N. Sarier, E. Onder, Organic phase change materials and their textile applications: an overview. Thermochim 7–60 (2012)

    Google Scholar 

  121. K. Horikiri, Y. Yao, J. Yao, Numerical optimization of thermal comfort improvement for indoor environment with occupants and furniture 303–315 (2015)

    Google Scholar 

  122. X. Yang, P. Fazio, H. Ge, J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, 188–196 (2012)

    Google Scholar 

  123. L.H. Mortensen, C. Rode, R. Peuhkuri, Investigation of airflow patterns in a microclimate by particle image velocimetry (PIV), 1929–1938 (2008)

    Google Scholar 

  124. M. Corcione, L. Fontana, G. Moncada Lo Giudice, A parametric analysis on the effects of furnishings upon the performance of radiant floor-panel heating systems 59–68 (2000)

    Google Scholar 

  125. M.Z. Pomianowski, F. Khalegi,G. Domarks, J. Taminskas, K. Bandurski, K.K. Madsen, et al. Experimental investigation of the influence of obstacle in the room on passive night-time cooling using displacement ventilation 499–506 (2011)

    Google Scholar 

  126. L. Fontana, Thermal performance of radiant heating floors in furnished enclosed spaces 1547–1555 (2011)

    Google Scholar 

  127. J. Le Dréau, Energy flow and thermal comfort in buildings—comparison of radiant and air-based heating and cooling systems (2014)

    Google Scholar 

  128. K.A. Antonopoulos, E.P. Koronaki, Effect of indoor mass on the time constant and thermal delay of buildings 391–402 (2000)

    Google Scholar 

  129. J. Yam, Y. Li, Z. Zheng, Nonlinear coupling between thermal mass and natural ventilation in buildings, 1251–1264 (2003)

    Google Scholar 

  130. H. Wolisz, T.M. Kull, R. Streblow, D. Müller, The Effect of Furniture and Floor Covering upon Dynamic Thermal Building Simulations (2015)

    Google Scholar 

  131. P. Raftery, E. Lee, T. Webster, T. Hoyt, F. Bauman, Effects of furniture and contents on peak cooling load 445–457 (2014)

    Google Scholar 

  132. Q. Nguyen, T. Ngo, P. Mendis, A review on fire protection for phase change materials in building applications, in From Materials to Structures: Advancement Through Innovation, ed by Samali, Attard, Song (Taylor & Francis Group, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. P. Q. Delgado .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, J.M.P.Q., Martinho, J.C., Vaz Sá, A., Guimarães, A.S., Abrantes, V. (2019). PCM Current Applications and Thermal Performance. In: Thermal Energy Storage with Phase Change Materials. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97499-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97499-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97498-9

  • Online ISBN: 978-3-319-97499-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics