Skip to main content

Clear-Sky Radiation Models and Aerosol Effects

  • Chapter
  • First Online:
Solar Resources Mapping

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter offers a description of the main factors that affect the transmission of solar radiation through the cloudless atmosphere, and the corresponding modeling approaches. The limitations of broadband modeling are discussed, and methodological improvements are described. A detailed discussion of the various inputs required by different clear-sky radiation models, and how to obtain such data, is provided so that the reader can operate these models with appropriate inputs, depending on the application and geographical coverage. In particular, the benefits of using atmospheric data provided by recent reanalyses are described. The impact of aerosol attenuation on the different irradiance components is discussed, with a focus on the aerosol optical depth. Its methods of measurement, properties, reduction methods, accuracy, and spatiotemporal variability are described. The error propagation between aerosol data and the predicted irradiance is quantified, and examples are provided. Seven models of the literature are selected for further discussion and validation. This validation is performed using high-quality radiometric data from Tamanrasset, Algeria, and is done in two different ways: an ideal validation based on the best possible (locally measured) aerosol information and a practical method (generalizable anywhere) based on reanalysis data. A sensible degradation of performance is obvious when using the second approach. Finally, some likely or desirable future developments in the field are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://reanalyses.org/atmosphere/comparison-table

  2. 2.

    https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.

  3. 3.

    https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.

  4. 4.

    http://rtweb.aer.com/rrtm_frame.html.

  5. 5.

    https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation.

  6. 6.

    https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API.

  7. 7.

    http://libradtran.org.

  8. 8.

    https://www.nrel.gov/rredc/smarts/.

  9. 9.

    http://www.soda-pro.com/web-services/radiation/cams-mcclear.

  10. 10.

    https://giovanni.gsfc.nasa.gov/giovanni/.

  11. 11.

    https://www.umb.edu/spectralmass/terra_aqua_modis/modis_brdf_albedo_cmg_gap-filled_snow-free_product_mcd43gf_v005.

  12. 12.

    http://nsidc.org/data/G02156; http://www.globsnow.info/.

  13. 13.

    https://ozoneaq.gsfc.nasa.gov/tools/ozonemap/.

  14. 14.

    http://www.sciamachy.org/products/index.php?species=O3; https://disc.gsfc.nasa.gov/datasets/OMO3PR_003/summary.

  15. 15.

    https://woudc.org/data/explore.php?lang=en.

  16. 16.

    http://www.temis.nl/airpollution/no2.html; http://www.sciamachy.org/products/index.php?species=NO2.

  17. 17.

    http://atmos3.cr.chiba-u.jp/skynet/data.html.

  18. 18.

    http://www.euroskyrad.net/.

  19. 19.

    http://ebas.nilu.no/default.aspx.

  20. 20.

    http://www.suominet.ucar.edu/index.html.

  21. 21.

    http://egvap.dmi.dk/.

  22. 22.

    https://gmao.gsfc.nasa.gov/research/aerosol/modeling/nr1_movie/

  23. 23.

    http://bsrn.awi.de/.

References

  • Amillo AG, Huld T, Müller R (2014) A new database of global and direct solar radiation using the Eastern Meteosat satellite, models and validation. Remote Sens 6:8165–8189

    Article  Google Scholar 

  • Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geografis Annal 2:156–166

    Google Scholar 

  • Antonanzas-Torres F, Antonanzas J, Urraca R, Alia-Martinez M, Martinez-de-Pison FJ (2016) Impact of atmospheric components on solar clear-sky models at different elevation: case study Canary Islands. Energy Convers Manag 109:122–129

    Article  Google Scholar 

  • Badescu V (2013) Assessing the performance of solar radiation computing models and model selection procedures. J Atmos Sol-Terr Phys 105:119–134

    Article  Google Scholar 

  • Badescu V et al (2012a) Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky. Theor Appl Climatol 111:379–399

    Article  Google Scholar 

  • Badescu V et al (2012b) Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models. Renew Sust Energ Rev 16:1636–1656

    Article  Google Scholar 

  • Badescu V et al (2013) Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renew Energy 55:85–103

    Article  Google Scholar 

  • Baig H, Fernández EF, Mallick TK (2016) Influence of spectrum and latitude on the annual optical performance of a dielectric based BICPV system. Sol Energy 124:268–277

    Article  Google Scholar 

  • Bird RE, Hulstrom RL (1980) Direct insolation models. Solar Energy Research Institute (now NREL) Rep. SERI/TR-335-344, Golden, CO. https://www.nrel.gov/docs/legosti/old/344.pdf

  • Bird RE, Hulstrom RL (1981a) Review, evaluation, and improvement of direct irradiance models. J Sol Energy Eng 103:182–192

    Article  Google Scholar 

  • Bird RE, Hulstrom RL (1981b) A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Institute (now NREL) Rep. SERI/TR-642–761, Golden, CO. http://www.nrel.gov/docs/legosti/old/761.pdf

  • Blanc P et al (2014) Direct normal irradiance related definitions and applications: the circumsolar issue. Sol Energy 110:561–577

    Article  Google Scholar 

  • Blanc P, Wald L (2016) On the effective solar zenith and azimuth angles to use with measurements of hourly irradiation. Adv Sci Res 13:1–6

    Article  Google Scholar 

  • Cachorro VE, Casanova JL, Frutos AMd (1987a) The influence of Angström parameters on calculated direct solar spectral irradiances at high turbidities. Sol Energy 39:399–407

    Article  Google Scholar 

  • Cachorro VE, de Frutos AM, Casanova JL (1987b) Determination of the Angström turbidity parameters. Appl Opt 26:3069–3076

    Article  Google Scholar 

  • Chauvin R, Nou J, Eynard J, Thil S, Grieu S (2018) A new approach to the real-time assessment and intraday forecasting of clear-sky direct normal irradiance. Sol Energy 167:35–51

    Article  Google Scholar 

  • Che H et al (2015) Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos Chem Phys 15:7619–7652

    Article  Google Scholar 

  • d’Oliveira FA, de Melo FCL, Devezas TC (2016) High-altitude platforms—present situation and technology trends. J Aerosp Technol Manag 8:249–262

    Article  Google Scholar 

  • Eissa Y et al (2015) Validating surface downwelling solar irradiances estimated by the McClear model under cloud-free skies in the United Arab Emirates. Sol Energy 114:17–31

    Article  Google Scholar 

  • Eissa Y et al (2018) Prediction of the day-ahead clear-sky downwelling surface solar irradiances using the REST2 model and WRF-CHIMERE simulations over the Arabian Peninsula. Sol Energy 162:36–44

    Article  Google Scholar 

  • Engerer NA, Mills FP (2015) Validating nine clear sky radiation models in Australia. Sol Energy 120:9–24

    Article  Google Scholar 

  • Fernández EF, Almonacid F, Rodrigo P, Pérez-Higueras P (2013) Model for the prediction of the maximum power of a high concentrator photovoltaic module. Sol Energy 97:12–18

    Article  Google Scholar 

  • Gueymard CA (1989) A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the Earth’s surface. Sol Energy 43:253–265

    Article  Google Scholar 

  • Gueymard CA (1994) Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Sol Energy 53:57–71

    Article  Google Scholar 

  • Gueymard CA (1995) SMARTS2, simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Florida Solar Energy Center, Cocoa, FL, Rep. FSEC-PF-270-95

    Google Scholar 

  • Gueymard CA (1996) Multilayer-weighted transmittance functions for use in broadband irradiance and turbidity calculations. In: Campbell-Howe R, Wilkins-Crowder B (eds) Proceeding of solar ‘96, American Solar Energy Society, Asheville, NC, pp 281–288

    Google Scholar 

  • Gueymard CA (1998) Turbidity determination from broadband irradiance measurements: a detailed multicoefficient approach. J Appl Meteorol 37:414–435

    Article  Google Scholar 

  • Gueymard CA (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71:325–346

    Article  Google Scholar 

  • Gueymard CA (2003a) Direct solar transmittance and irradiance predictions with broadband models. Pt 1: detailed theoretical performance assessment. Solar Energy 74:355–379. Corrigendum: Solar Energy 376, 513 (2004)

    Google Scholar 

  • Gueymard CA (2003b) Direct solar transmittance and irradiance predictions with broadband models. Pt 2: validation with high-quality measurements. Solar Energy 74:381–395. Corrigendum: Solar Energy 376, 515 (2004)

    Google Scholar 

  • Gueymard CA (2005) Interdisciplinary applications of a versatile spectral solar irradiance model: a review. Energy 30:1551–1576

    Article  Google Scholar 

  • Gueymard CA (2008a) Prediction and validation of cloudless shortwave solar spectra incident on horizontal, tilted, or tracking surfaces. Sol Energy 82:260–271

    Article  Google Scholar 

  • Gueymard CA (2008b) REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—validation with a benchmark dataset. Sol Energy 82:272–285

    Article  Google Scholar 

  • Gueymard CA (2009) Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy 83:432–444

    Article  Google Scholar 

  • Gueymard CA (2011) Uncertainties in modeled direct irradiance around the Sahara as affected by aerosols: are current datasets of bankable quality? J Sol Energy Eng 133:031013–031024

    Article  Google Scholar 

  • Gueymard CA (2012a) Clear-sky irradiance predictions for solar resource mapping and large-scale applications: improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol Energy 86:2145–2169

    Article  Google Scholar 

  • Gueymard CA (2012b) Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Sol Energy 86:2553–3544

    Google Scholar 

  • Gueymard CA (2014a) Impact of on-site atmospheric water vapor estimation methods on the accuracy of local solar irradiance predictions. Sol Energy 101:74–82

    Article  Google Scholar 

  • Gueymard CA (2014b) A review of validation methodologies and statistical performance indicators for modeled solar radiation data: towards a better bankability of solar projects. Renew Sust Energ Rev 39:1024–1034

    Article  Google Scholar 

  • Gueymard CA (2017) Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 1: impacts on global horizontal irradiance. Sol Energy 153:755–765

    Article  Google Scholar 

  • Gueymard CA (2018) A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Sol Energy 168:2–9

    Article  Google Scholar 

  • Gueymard CA, Kambezidis HD (2004) Solar spectral radiation. In: Muneer T (ed) Solar radiation and daylight models. Elsevier

    Google Scholar 

  • Gueymard CA, Myers D, Emery K (2002) Proposed reference irradiance spectra for solar energy systems testing. Sol Energy 73:443–467

    Article  Google Scholar 

  • Gueymard CA, Myers DR (2008) Validation and ranking methodologies for solar radiation models. In: Badescu V (ed) Modeling solar radiation at the earth surface. Springer

    Google Scholar 

  • Gueymard CA, Myers DR (2009) Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol Energy 83:171–185

    Article  Google Scholar 

  • Gueymard CA, Myers DR (2010) Solar resource for space and terrestrial applications. In: Fraas LM, Partain LD (eds) Solar cells and their applications, 2nd ed. Wiley

    Google Scholar 

  • Gueymard CA, Ruiz-Arias JA (2015) Validation of direct normal irradiance predictions under arid conditions: a review of radiative models and their turbidity-dependent performance. Renew Sust Energ Rev 45:379–396

    Article  Google Scholar 

  • Gueymard CA, Thevenard D (2009) Monthly average clear-sky broadband irradiance database for worldwide solar heat gain and building cooling load calculations. Sol Energy 83:1998–2018

    Article  Google Scholar 

  • Gueymard CA, Vignola F (1998) Determination of atmospheric turbidity from the diffuse-beam broadband irradiance ratio. Sol Energy 63:135–146

    Article  Google Scholar 

  • Habte A, Sengupta M, Andreas A, Wilcox S, Stoffel T (2016) Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements. Sol Energy 133:372–393

    Article  Google Scholar 

  • Holben BN et al (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Holben BN et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res D106:12067–12097

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Clough SA, Morcrette JJ, Hou YT (2004) Development and evaluation of RRTMG_SW, a shortwave radiative transfer model for general circulation model applications. In: Proceeding of 14th ARM science meeting, Albuquerque, NM. http://www.arm.gov/publications/proceedings/conf14/extended_abs/iacono-mj.pdf

  • Ineichen P (2006) Comparison of eight clear sky broadband models against 16 independent data banks. Sol Energy 80:468–478

    Article  Google Scholar 

  • Ineichen P (2008) A broadband simplified version of the solis clear sky model. Sol Energy 82:758–762

    Article  Google Scholar 

  • Ineichen P (2016) Validation of models that estimate the clear sky global and beam solar irradiance. Sol Energy 132:332–344

    Article  Google Scholar 

  • Ineichen P (2018) High turbidity solis clear sky model: development and validation. Remote Sens 10:435

    Article  Google Scholar 

  • Inman RH, Edson JG, Coimbra CFM (2015) Impact of local broadband turbidity estimation on forecasting of clear sky direct normal irradiance. Sol Energy 117:125–138

    Article  Google Scholar 

  • Jessen W et al (2018) Proposal and evaluation of subordinate standard solar irradiance spectra for applications in solar energy systems. Sol Energy 168:30–43

    Article  Google Scholar 

  • Kosmopoulos PG, Kazadzis S, Taylor M, Raptis PI, Keramitsoglou I, Kiranoudis C, Bais AF (2018) Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements. Atmos Meas Tech 11:907–924

    Article  Google Scholar 

  • Larrañeta M, Reno MJ, Lillo-Bravo I, Silva-Pérez MA (2017) Identifying periods of clear sky direct normal irradiance. Renew Energy 113:756–763

    Article  Google Scholar 

  • Lefèvre M et al (2013) McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos Meas Tech 6:2403–2418

    Article  Google Scholar 

  • Lefèvre M, Wald L (2016) Validation of the McClear clear-sky model in desert conditions with three stations in Israel. Adv Sci Res 13:21–26. https://doi.org/10.5194/asr-13-21-2016

    Article  Google Scholar 

  • Li J, Lv M, Sun K (2016) Optimum area of solar array for stratospheric solar-powered airship. Proc IMechE Part G J Aerospace Eng 231:2654–2665

    Article  Google Scholar 

  • Li ZQ et al (2018) Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of Sun–sky radiometer Observation Network (SONET) measurements. Bull Amer Meteorol Soc 99:739–755

    Article  Google Scholar 

  • Liu H, Aberle AG, Buonassisi T, Peters IM (2016) On the methodology of energy yield assessment for one-sun tandem solar cells. Sol Energy 135:598–604

    Article  Google Scholar 

  • Long CN, Ackerman TP (2000) Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J Geophys Res 105D:15609–15626

    Article  Google Scholar 

  • Long CN, Shi Y (2008) An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos Sci J 2:23–37

    Article  Google Scholar 

  • Martinez-Lozano JA, Utrillas MP, Tena F, Cachorro VE (1998) The parameterisation of the atmospheric aerosol optical depth using the Ångström power law. Sol Energy 63:303–311

    Article  Google Scholar 

  • Molineaux B, Ineichen P (1996) On the broad band transmittance of direct irradiance in a cloudless sky and its application to the parameterization of atmospheric turbidity. Sol Energy 56:553–563

    Article  Google Scholar 

  • Mueller RW et al (2004) Rethinking satellite-based solar irradiance modeling: the SOLIS clear-sky module. Remote Sens Environ 91:160–174

    Article  Google Scholar 

  • Oumbe A, Qu Z, Blanc P, Lefèvre M, Wald L, Cros S (2014) Decoupling the effects of clear atmosphere and clouds to simplify calculations of the broadband solar irradiance at ground level. Geosci Model Dev 7:1661–1669

    Article  Google Scholar 

  • Polo J, Alonso-Abella M, Ruiz-Arias JA, Balenzategui JL (2017) Worldwide analysis of spectral factors for seven photovoltaic technologies. Sol Energy 142:194–203

    Article  Google Scholar 

  • Polo J, Antonanzas-Torres F, Vindel JM, Ramirez L (2014) Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models. Renew Energy 68:785–792

    Article  Google Scholar 

  • Polo J, Estalayo G (2015) Impact of atmospheric aerosol loads on concentrating solar power production in arid-desert sites. Sol Energy 115:621–631

    Article  Google Scholar 

  • Reno MJ, Hansen CW (2016) Identification of periods of clear sky irradiance in time series of GHI measurements. Renew Energy 90:520–531

    Article  Google Scholar 

  • Rigollier C, Bauer O, Wald L (2000) On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the Heliosat method. Sol Energy 68:33–48

    Article  Google Scholar 

  • Ruiz-Arias JA, Gueymard CA (2015) Solar resource for high-concentrator photovoltaic applications. In: Perez-Higueras PJ, Fernandez FE (eds) High concentrator photovoltaics: fundamentals, engineering and power plants. Springer

    Google Scholar 

  • Ruiz-Arias JA, Gueymard CA (2018a) A multi-model benchmarking of direct and global clear-sky solar irradiance predictions at arid sites using a reference physical radiative transfer model. Sol Energy 171:447–465

    Article  Google Scholar 

  • Ruiz-Arias JA, Gueymard CA (2018b) Worldwide inter-comparison of clear-sky solar radiation models: consensus-based review of direct and global irradiance components simulated at the earth surface. Sol Energy 168:10–29

    Article  Google Scholar 

  • Ruiz-Arias JA, Gueymard CA, Quesada-Ruiz S, Santos-Alamillos FJ, Pozo-Vázquez D (2016) Bias induced by the AOD representation time scale in long-term solar radiation calculations. Part 1: sensitivity of the AOD distribution to the representation time scale. Sol Energy 137:608–620

    Article  Google Scholar 

  • Sengupta M, Habte A, Gueymard C, Wilbert S, Renné D (2017) Best practices handbook for the collection and use of solar resource data for solar energy applications, 2nd edn. National Renewable Energy Lab., Golden, CO. Rep. NREL/TP-5D00-68886, https://www.nrel.gov/docs/fy18osti/68886.pdf

  • Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G, Shelby J (2018) The National Solar Radiation Data Base (NSRDB). Renew Sust Energ Rev 89:51–60

    Article  Google Scholar 

  • Sun Q, Wang Z, Li Z, Erb A, Schaaf CB (2017) Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset. Int J Appl Earth Obs Geoinf 58:36–49

    Article  Google Scholar 

  • Theristis M, O’Donovan TS (2015) Electrical-thermal analysis of III–V triple-junction solar cells under variable spectra and ambient temperatures. Sol Energy 118:533–546

    Article  Google Scholar 

  • Vignola F, Grover C, Lemon N, McMahan A (2012) Building a bankable solar radiation dataset. Sol Energy 86:2218–2229

    Article  Google Scholar 

  • Xie Y, Sengupta M, Dudhia J (2016) A Fast All-sky Radiation Model for Solar applications (FARMS): algorithm and performance evaluation. Sol Energy 135:435–445

    Article  Google Scholar 

  • Xie Y, Sengupta M, Deline C (2017) Recent advancements in the numerical simulation of surface irradiance for solar energy applications. In: Proceeding of IEEE 44th photovoltaic specialists conference, Washington, DC. https://www.nrel.gov/docs/fy17osti/67804.pdf

  • Yang D (2016) Solar radiation on inclined surfaces: corrections and benchmarks. Sol Energy 136:288–302

    Article  Google Scholar 

  • Zhang H, Huang C, Yu S, Li L, Xin X, Liu Q (2018) A lookup-table-based approach to estimating surface solar irradiance from geostationary and polar-orbiting satellite data. Remote Sens 10:411

    Article  Google Scholar 

  • Zhang H, Zhang M, Cui Z, Wang Y, Xin J (2012) Simulation and validation of the aerosol optical thickness over China in 2006. Acta Meteorologica Sinica 26:330–344

    Article  Google Scholar 

  • Zhang T, Stackhouse PW, Chandler WS, Westberg DJ (2014) Application of a global-to-beam irradiance model to the NASA GEWEX SRB dataset: an extension of the NASA surface meteorology and solar energy datasets. Sol Energy 110:117–131

    Article  Google Scholar 

  • Zhang Y (2016) Simplified analytical model for investigating the output power of solar array on stratospheric airship. Int’l J Aeronautical Space Sci 17:432–441

    Article  Google Scholar 

  • Zhong X, Kleissl J (2015) Clear sky irradiances using REST2 and MODIS. Sol Energy 116:144–164

    Article  Google Scholar 

  • Zhu W, Xu Y, Li J, Du H, Zhang L (2018) Research on optimal solar array layout for near-space airship with thermal effect. Sol Energy 170:1–13

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Labow GJ, Bhartia PK, Froidevaux L, Witte JC (2011) A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos Chem Phys 11:9237–9251

    Article  Google Scholar 

Download references

Acknowledgements

The AERONET and BSRN staff and participants are thanked for their successful effort in establishing and maintaining the various sites whose data were advantageously used in the present developments. The author also wishes to thank Dr. José Antonio Ruiz-Arias for his insightful comments and preparation of Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Gueymard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gueymard, C.A. (2019). Clear-Sky Radiation Models and Aerosol Effects. In: Polo, J., Martín-Pomares, L., Sanfilippo, A. (eds) Solar Resources Mapping. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97484-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97484-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97483-5

  • Online ISBN: 978-3-319-97484-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics