Skip to main content

3D Reconstruction of Confocal Image Data

  • Chapter
  • First Online:
Basic Confocal Microscopy

Abstract

The main advantage of the confocal microscope is often said to be the ability to produce serial optical sections of fluorescent samples, ultimately for the purpose of reconstructing microscopic objects in three dimensions (Carlsson and Aslund Appl. Opt. 26:3232–3238, 1987). There are many ways, and reasons, to reconstruct confocal image data. As an example, consider the sample of embryonic mouse heart shown in Fig. 10.1 reconstructed using a variety of three-dimensional (3D) techniques. This chapter will introduce these methods and discuss topics such as (a) why one might want to undertake this task, (b) some definitions of the representation of 3D space using images, (c) the different types of 3D representations that can be made, and (d) the necessary steps to make useful reconstructions. Along the way, the limitations and potential pitfalls that arise will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Biggs DS (2010) 3D deconvolution microscopy. Curr Protoc Cytom. Chapter 12: p. Unit 12 19 1–20

    Google Scholar 

  • Biggs DSC (2004) Clearing up deconvolution. Biophoton Int (February):32–37

    Google Scholar 

  • Carlsson K, Aslund N (1987) Confocal imaging for 3-D digital microscopy. Appl Opt 26(16):3232–3238

    Article  CAS  Google Scholar 

  • Clendenon JL, Byars JM, Hyink DP (2006) Image processing software for 3D light microscopy. Nephron Exp Nephrol 103(2):e50–e54

    Article  Google Scholar 

  • Feng D, Marshburn D, Jen D, Weinberg RJ, Taylor RM II, Burette A (2007) Stepping into the third dimension. J Neurosci 27(47):12757–12760

    Article  CAS  Google Scholar 

  • Guan YQ, Cai YY, Zhang X, Lee YT, Opas M (2008) Adaptive correction technique for 3D reconstruction of fluorescence microscopy images. Microsc Res Tech 71(2):146–157

    Article  CAS  Google Scholar 

  • Hecksher-Sorensen J, Sharpe J (2001) 3D confocal reconstruction of gene expression in mouse. Mech Dev 100(1):59–63

    Article  CAS  Google Scholar 

  • Lee SC, Bajcsy P (2006) Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering. J Microsc 221(Pt 2):122–136

    Article  Google Scholar 

  • Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B (2003) A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 56(1):23–36

    Article  Google Scholar 

  • Losavio BE, Liang Y, Santamaría-Pang A, Kakadiaris IA, Colbert CM, Saggau P (2008) Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. J Neurophysiol 100(4):2422–2429

    Article  Google Scholar 

  • Mackenzie JM, Burke MG, Carvalho T, Eades A (2006) Ethics and digital imaging. Microscopy Today 14(1):40–41

    Article  Google Scholar 

  • McNally JG, Karpova TS, Cooper JA, Conchello J-A (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19(3):373–385

    Article  CAS  Google Scholar 

  • Rodriguez A, Ehlenberger D, Kelliher K, Einstein M, Henderson SC, Morrison JH, Hof PR, Wearne SL (2003) Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30(1):94–105

    Article  CAS  Google Scholar 

  • Rueden CT, Eliceiri KW (2007) Visualization approaches for multidimensional biological image data. BioTechniques 43(1 Suppl):31 33-6

    Article  Google Scholar 

  • Ruthensteiner B, Hess M (2008) Embedding 3D models of biological specimens in PDF publications. Microsc Res Tech 71(11):778–786

    Article  Google Scholar 

  • Savio-Galimberti E, Frank J, Inoue M, Goldhaber JI, Cannell MB, Bridge JHB, Sachse FB (2008) Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys J 95(4):2053–2062

    Article  CAS  Google Scholar 

  • Soufan AT, van den Berg G, Moerland PD, Massink MMG, van den Hoff MJB, Moorman AFM, Ruijter JM (2007) Three-dimensional measurement and visualization of morphogenesis applied to cardiac embryology. J Microsc 225(Pt 3):269–274

    Article  CAS  Google Scholar 

  • Sun Y, Rajwa B, Robinson JP (2004) Adaptive image-processing technique and effective visualization of confocal microscopy images. Microsc Res Tech 64(2):156–163

    Article  CAS  Google Scholar 

  • Yi Q, Coppolino MG (2006) Automated classification and quantification of F-actin-containing ruffles in confocal micrographs. BioTechniques 40(6):745–746, 748, 750 passim

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Trusk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trusk, T.C. (2018). 3D Reconstruction of Confocal Image Data. In: Jerome, W., Price, R. (eds) Basic Confocal Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-97454-5_10

Download citation

Publish with us

Policies and ethics