Skip to main content

Evolution and Adaptation in the Maize Genome

  • Chapter
  • First Online:
The Maize Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Maize (Zea mays ssp. mays) has been a prime model organism for understanding the processes of domestication and adaptation. During domestication, maize underwent drastic morphological changes that differentiate it from its teosinte progenitor such as reduced tillering and seed shattering and freeing of the grain from a stony fruit case. Likewise, post-domestication adaptation to new environments has allowed maize to expand to a distribution far exceeding its wild relatives and in fact to a greater range than any other domesticate. Previous work using traditional top-down approaches, such as quantitative trait locus mapping and genome-wide association, has been successful in identifying canonical candidates for domestication and adaptation. However, the recent availability of genomic data and development of new analytical tools offer the opportunity to increasingly look at these processes from the bottom-up based on genomic signatures of selection. Here we review progress thus far in genomic research of maize domestication and adaptation. We discuss the insights genomics has shed on our understanding of these processes and conclude with a future outlook for how genomics might be further applied to these fields.

Nancy Manchanda and Samantha J. Snodgrass Equally Contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Liguori JA, Tenaillon MI, Vazquez-Lobo A, Gaut BS, Jaramillo-Correa JP, Montes-Hernandez S, Souza V, Eguiarte LE (2017) Connecting genomic patterns of local adaptation and niche suitability in teosintes. Mol Ecol 26(16):4226–4240

    Article  CAS  Google Scholar 

  • Alonso-Blanco C, El-Assal SED, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the landsberg erecta and cape verde islands ecotypes of arabidopsis thaliana. Genetics 149(2):749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amato J, Hudson JC (1996) Making the corn belt: a geographical history of middle-western agriculture (midwestern history and culture.). Am His Rev 101(2):576

    Google Scholar 

  • Beadle GW (1972) The mystery of maize. Field Mus. Bull. 212–221

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. CRC Press, pp 145–162

    Google Scholar 

  • Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J (2016) Recent demography drives changes in linked selection across the maize genome. Nat Plants 2(16):084

    Google Scholar 

  • Benz B, Cheng L, Leavitt SW, Eastoe C (2009) El riego and early maize agricultural evolution. Left Coast Press, Inc., Chap 5

    Google Scholar 

  • Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the vgt2 (zcn8) locus. PLoS ONE 8(8):1–17

    Article  Google Scholar 

  • Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resouce. Genetics 177:1915–1928

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  CAS  Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38(1):37–59

    Article  CAS  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178(4):2433–2437

    Article  Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci 95(8):4441–4446

    Article  CAS  Google Scholar 

  • Fang Z, Pyhäjärvi T, Weber AL, Dawe RK, Glaubitz JC, González JdJS, Ross-Ibarra C, Doebley J, Morrell PL, Ross-Ibarra J (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191(3):883–894

    Article  Google Scholar 

  • da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP (2015) The origin and evolution of maize in the Southwestern United States. Nat Plants 1. http://dx.doi.org/10.1038/nplants.2014.3

  • Fustier M, Brandenburg J, Boitard S, Lapeyronnie J, Eguiarte LE, Vigouroux Y, Manicacci D, Tenaillon MI (2017) Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Mol Ecol 26(10):2738–2756

    Article  CAS  Google Scholar 

  • Hake S, Ross-Ibarra J (2015) The natural history of model organisms: genetic, evolutionary and plant breeding insights from the domestication of maize. eLife https://doi.org/10.7554/elife.05861

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the arabidopsis thaliana genome. Science 334(6052):83–86

    Article  CAS  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci 108(3):1088–1092

    Google Scholar 

  • Hoffmann AA, Sgrò CM, Weeks AR (2004) Chromosomal inversion polymorphisms and adaptation. Trends Ecol Evol 19(9):482–488

    Article  Google Scholar 

  • Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF, Tian F (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci 115(2):E334–E341

    Article  CAS  Google Scholar 

  • Hufford MB, Bilinski P, Pyhäjärvi T, Ross-Ibarra J (2012a) Teosinte as a model system for population and ecological genomics. Trends Genet 28(12):606–615

    Google Scholar 

  • Hufford MB, Martinez-Meyer E, Gaut BS, Eguiarte LE, Tenaillon MI (2012b) Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLOS ONE 7(11):1–9

    Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhäjä T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012c) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9(e1003):477

    Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl Acad Sci 109(28):11,068–11,069

    Google Scholar 

  • Kapun M, Fabian DK, Goudet J, Flatt T (2016) Genomic evidence for adaptive inversion clines in drosophila melanogaster. Mol Biol Evol 33(5):1317–1336

    Article  CAS  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173(1):419–434

    Article  CAS  Google Scholar 

  • Lauter N, Doebley J (2002) Genetic variation for phenotypically invariant traits detected in teosinte: Implications for the evolution of novel forms. Genetics 160(1):333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauter N, Gustus C, Westerbergh A, Doebley J (2004) The inheritance and evolution of leaf pigmentation and pubescence in teosinte. Genetics 167(4):1949–1959

    Article  CAS  Google Scholar 

  • Lemmon ZH, Doebley JF (2014) Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL. Genetics 198:345–353

    Article  Google Scholar 

  • Lemmon ZH, Bukowski R, Sun Q, Doebley JF (2014) The role of cis regulatory evolution in maize domestication. PLoS Genet 10(11):1–15

    Article  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141(1):391–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8(9):1–14

    Article  Google Scholar 

  • Mangelsdorf PC (1947) The origin and evolution of maize. Adv Genet 1:161–2017

    Article  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99(9):6080–6084

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  Google Scholar 

  • Mei W, Stetter MG, Gates DJ, Stitzer MC, Ross-Ibarra J (2018) Adaptation in plant genomes: bigger is different. Am J Bot 105(1)

    Google Scholar 

  • Meng X, Muszynski MG, Danilevskaya ON (2011) The ft-like zcn8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23(3):942–960

    Article  CAS  Google Scholar 

  • Merrill WL, Hard RJ, Mabry JB, Fritz GJ, Adams KR, Roney JR, MacWilliams AC (2009) The diffusion of maize to the Southwestern United States and its impact. Proc Natl Acad Sci 106(50):21,019–21,026

    Google Scholar 

  • Moose SP, Lauter N, Carlson SR (2004) The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics 166(3):1451–1461

    Article  CAS  Google Scholar 

  • Piperno DR (2011) The origins of plant cultivation and domestication in the new world tropics 52(S4):S453–S470

    Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium b.p. maize from the central Balsas river valley, Mexico. Proc Natl Acad Sci 106(13):5019–5024

    Article  CAS  Google Scholar 

  • Purugganan MD, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65(1):171–183

    Article  Google Scholar 

  • Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J (2013) Complex patterns of local adaptation in teosinte. Genome Biol Evol 5(9):1594–1609

    Article  Google Scholar 

  • Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N (2016) Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26:3195–3201

    Article  CAS  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106(5):895–903

    Article  CAS  Google Scholar 

  • Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES (2016) Open chromatin reveals the functional maize genome. Proc Natl Acad Sci

    Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55

    Article  Google Scholar 

  • Romero Navarro JA, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NOG, Ortiz-Monasterio I, Vincente FS, Espinoza AG, Atlin G, Wenzl P, Hearne S, Buckler ES (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49:476–480

    Article  CAS  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci 104(suppl 1):8641–8648

    Article  CAS  Google Scholar 

  • Ross-Ibarra J, Tenaillon M, Gaut BS (2009) Historical divergence and gene flow in the genus zea. Genetics 181(4):1399–1413

    Article  CAS  Google Scholar 

  • Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19(7):1296–1311

    Article  CAS  Google Scholar 

  • Silva NCdA, Vidal R, Costa FM, Vaio M, Ogliari JB (2015) Presence of Zea luxurians (durieu and ascherson) bird in Southern Brazil: implications for the conservation of wild relatives of maize. PLoS ONE 10(10):1–16

    Article  CAS  Google Scholar 

  • Simons YB, Turchin MC, Pritchard JK, Sella G (2014) The deleterious mutation load is insensitive to recent population history. Nat Genet 46:220–224

    Article  CAS  Google Scholar 

  • Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

    Article  CAS  Google Scholar 

  • Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on sweet-mediated hexose transport. Nat Genet 47:1489–1493

    Article  CAS  Google Scholar 

  • Stetter MG, Thornton K, Ross-Ibarra J (2018) Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. BioRxiv 313247. https://doi.org/10.1101/313247

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  Google Scholar 

  • Swanson-Wagner R, Briskine R, Schaefer R, Hufford MB, Ross-Ibarra J, Myers CL, Tiffin P, Springer NM (2012) Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci 109(29):11,878–11,883

    Google Scholar 

  • Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Romay MC, Ross-Ibarra J, Sanchez-Gonzalez JdJ, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357(6350):512–515

    Article  CAS  Google Scholar 

  • Takuno S, Ralph P, Swarts K, Elshire RJ, Glaubitz JC, Buckler ES, Hufford MB, Ross-Ibarra J (2015) Independent molecular basis of convergent highland adaptation in maize. Genetics 200:1297–1312

    Article  Google Scholar 

  • Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21(7):1214–1225

    Article  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator ppd-h1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034

    Article  CAS  Google Scholar 

  • Vann L, Kono T, Pyhäjärvi T, Hufford MB, Ross-Ibarra J (2015) Natural variation in teosinte at the domestication locus teosinte branched1 (tb1). PeerJ 3:e900

    Article  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci 99(15):9650–9655

    Article  CAS  Google Scholar 

  • Wang H, Studer AJ, Zhao Q, Meeley R, Doebley JF (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in TGA1. Genetics 200(3):965–974

    Article  Google Scholar 

  • Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB (2017) Genome Biol 18

    Google Scholar 

  • Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, Ross-Ibarra J, Doebley JF (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9(6):1–13

    Article  Google Scholar 

  • Wills DM, Fang Z, York AM, Holland JB, Doebley JF (2018) Defining the role of the mads-box gene, zea agamous-like1, a target of selection during maize domestication. J Hered 109(3):333–338

    Article  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308(5726):1310–1314

    Article  CAS  Google Scholar 

  • Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214(2):852–864

    Article  CAS  Google Scholar 

  • Xue S, Bradbury P, Casstevens T, Holland JB (2016) Genetic architecture of domestication-related traits in maize. Genetics 204:13–99

    Article  Google Scholar 

  • Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T, Li J, Chen Y, Yan J, Yang X, Xu M (2013) Cacta-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci 110(42):16,969–16,974

    Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95(7):1025–1032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Hufford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manchanda, N., Snodgrass, S.J., Ross-Ibarra, J., Hufford, M.B. (2018). Evolution and Adaptation in the Maize Genome. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_19

Download citation

Publish with us

Policies and ethics