Skip to main content

Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Cardiac Extracellular Matrix

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1098))

Abstract

The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nemer M. Genetic insights into normal and abnormal heart development. Cardiovasc Pathol. 2008;17(1):48–54. Epub 2007/12/28. https://doi.org/10.1016/j.carpath.2007.06.005. PubMed PMID: 18160060.

    Article  CAS  PubMed  Google Scholar 

  2. van Wijk B, Moorman AF, van den Hoff MJ. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res. 2007;74(2):244–55. Epub 2006/12/26. https://doi.org/10.1016/j.cardiores.2006.11.022. PubMed PMID: 17187766.

    Article  CAS  Google Scholar 

  3. Watanabe Y, Zaffran S, Kuroiwa A, Higuchi H, Ogura T, Harvey RP, Kelly RG, Buckingham M. Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proc Natl Acad Sci U S A. 2012;109(45):18273–80. Epub 2012/10/25. https://doi.org/10.1073/pnas.1215360109. PubMed PMID: 23093675; PMCID: PMC3494960.

    Article  CAS  Google Scholar 

  4. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407(6801):221–6. Epub 2000/09/23. https://doi.org/10.1038/35025190. PubMed PMID: 11001064.

    Article  CAS  PubMed  Google Scholar 

  5. de la Pompa JL. Notch signaling in cardiac development and disease. Pediatr Cardiol. 2009;30(5):643–50. Epub 2009/02/03. https://doi.org/10.1007/s00246-008-9368-z. PubMed PMID: 19184573.

    Article  PubMed  Google Scholar 

  6. Zaffran S, Frasch M. Early signals in cardiac development. Circ Res. 2002;91(6):457–69. Epub 2002/09/21. PubMed PMID: 12242263.

    Article  CAS  PubMed  Google Scholar 

  7. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14(5):608–16.

    Article  CAS  PubMed  Google Scholar 

  8. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341(1):126–40. https://doi.org/10.1016/j.ydbio.2009.10.026. PubMed PMID: 19854168; PMCID: 2854274.

    Article  CAS  PubMed  Google Scholar 

  9. Lockhart M, Wirrig E, Phelps A, Wessels A. Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol. 2011;91(6):535–50. https://doi.org/10.1002/bdra.20810. PubMed PMID: PMC3144859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol. 2013;29:27–61. Epub 2013/10/09. https://doi.org/10.1146/annurev-cellbio-101512-122340. PubMed PMID: 24099083.

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83. Epub 2006/03/08. https://doi.org/10.1016/j.biomaterials.2006.02.014. PubMed PMID: 16519932.

  12. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53. Epub 2011/03/23. https://doi.org/10.1146/annurev-bioeng-071910-124743. PubMed PMID: 21417722.

    Article  CAS  PubMed  Google Scholar 

  13. Bayomy AF, Bauer M, Qiu Y, Liao R. Regeneration in heart disease—Is ECM the key? Life Sci. 2012;91(17):823–7. https://doi.org/10.1016/j.lfs.2012.08.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams C, Quinn KP, Georgakoudi I, Black LD. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 2014;10(1):194–204. https://doi.org/10.1016/j.actbio.2013.08.037. PubMed PMID: 24012606. PMCID: PMC3840040.

    Article  CAS  PubMed  Google Scholar 

  15. Williams C, Sullivan K, Black LD. Partially digested adult cardiac extracellular matrix promotes cardiomyocyte proliferation In Vitro. Adv Healthc Mater. 2015;4(10):1545–54. https://doi.org/10.1002/adhm.201500035. PubMed PMID: 25988681; PMCID: 4504755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullivan KE, Black LD. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J Biomech Eng. 2013;135(7):71001. https://doi.org/10.1115/1.4024349. PubMed PMID: 23720014.

    Article  PubMed  Google Scholar 

  17. Sullivan KE, Quinn KP, Tang KM, Georgakoudi I, Black LD. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther. 2014;5(1):14. https://doi.org/10.1186/scrt403. PubMed PMID: 24460869; PMCID: PMC4055039.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech. 2010;43(1):93–8.

    Article  PubMed  Google Scholar 

  19. Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL. Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol. 1995;27(4):981–90.

    Article  CAS  PubMed  Google Scholar 

  20. Milewicz DM. Identification of defects in the fibrillin gene and protein in individuals with the Marfan syndrome and related disorders. Tex Heart Inst J. 1994;21(1):22.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davies B, d’Udekem Y, Ukoumunne OC, Algar EM, Newgreen DF, Brizard CP. Differences in extra-cellular matrix and myocyte homeostasis between the neonatal right ventricle in hypoplastic left heart syndrome and truncus arteriosus. Eur J Cardiothorac Surg. 2008;34(4):738–44.

    Article  PubMed  Google Scholar 

  22. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res. 2008;102(7):752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol. 2010;48(3):490–6. Epub 2009/08/19. https://doi.org/10.1016/j.yjmcc.2009.08.003. PubMed PMID: 19686759; PMCID: PMC2823835.

    Article  CAS  PubMed  Google Scholar 

  24. French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, Davis ME. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8(12):4357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Part A. 2010;16(10):3261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loftis MJ, Sexton D, Carver W. Effects of collagen density on cardiac fibroblast behavior and gene expression. J Cell Physiol. 2003;196(3):504–11.

    Article  CAS  PubMed  Google Scholar 

  27. Jacot JG, Kita-Matsuo H, Wei KA, Vincent Chen H, Omens JH, Mercola M, McCulloch AD. Cardiac myocyte force development during differentiation and maturation. Ann N Y Acad Sci. 2010;1188(1):121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  29. Miskon A, Mahara A, Uyama H, Yamaoka T. A suspension induction for myocardial differentiation of rat mesenchymal stem cells on various extracellular matrix proteins. Tissue Eng Part C Methods. 2010;16(5):979–87.

    Article  CAS  PubMed  Google Scholar 

  30. Fomovsky GM, Holmes JW. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol. 2010;298(1):H221–8. PubMed PMID: 19897714.

    CAS  Google Scholar 

  31. Gjorevski N, Nelson CM. Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine Growth Factor Rev. 2009;20(5–6):459–65. https://doi.org/10.1016/j.cytogfr.2009.10.013. PubMed PMID: PMC2787686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 2015;66(12):1364–74.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ricard-Blum S, Salza R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol. 2014;23(7):457–63.

    Article  CAS  PubMed  Google Scholar 

  34. Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A. 2011;17(19–20):2435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    Article  PubMed  Google Scholar 

  36. Rienks M, Papageorgiou A-P, Frangogiannis NG, Heymans S. Myocardial extracellular matrix. an ever-changing and diverse entity. Circ Res. 2014;114(5):872–88. https://doi.org/10.1161/circresaha.114.302533.

    Article  CAS  PubMed  Google Scholar 

  37. George EL, Baldwin HS, Hynes RO. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood. 1997;90(8):3073–81.

    CAS  PubMed  Google Scholar 

  38. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development. 1993;117(4):1183–98. Epub 1993/04/01.

    CAS  PubMed  Google Scholar 

  39. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson TD, Hill RC, Dzieciatkowska M, Nigam V, Behfar A, Christman KL, Hansen KC. Quantification of decellularized human myocardial matrix: a comparison of six patients. Proteomics Clin Appl. 2016;10(1):75–83. https://doi.org/10.1002/prca.201500048.

    Article  CAS  PubMed  Google Scholar 

  41. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, Gaudette GR, Ott HC. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016;118(1):56–72. https://doi.org/10.1161/circresaha.115.306874.

    Article  CAS  PubMed  Google Scholar 

  42. Merna N, Fung KM, Wang JJ, King CR, Hansen KC, Christman KL, George SC. Differential β3 Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components. Tissue Eng Part A. 2015;21(15–16):2195–205. https://doi.org/10.1089/ten.tea.2014.0337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Umansky KB, Yifa O, Kain D, Rajchman D, Leach J, Bassat DR. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547(7662):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glickman NS, Yelon D, editors. Cardiac development in zebrafish: coordination of form and function. Seminars in cell & developmental biology: Elsevier; 2002.

    Google Scholar 

  45. Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  46. Matsui T, Raya Á, Callol-Massot C, Kawakami Y, Oishi I, Rodriguez-Esteban C. Belmonte JCI. miles-apart-Mediated regulation of cell–fibronectin interaction and myocardial migration in zebrafish. Nat Rev Cardiol. 2007;4(S1):S77.

    Article  CAS  Google Scholar 

  47. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105(10):934–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res. 1998;83(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  49. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong T-T, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev Cell. 2009;16(2):233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45(1):657–87. https://doi.org/10.1146/annurev.pharmtox.45.120403.095802. PubMed PMID: 15822192.

    Article  CAS  PubMed  Google Scholar 

  53. Quinn KP, Sullivan KE, Liu Z, Ballard Z, Siokatas C, Georgakoudi I, Black LD. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction. Sci Rep. 2016;6:35823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen J-H, Simmons CA. Cell–matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res. 2011;108(12):1510–24.

    Article  CAS  PubMed  Google Scholar 

  55. Yip CYY, Simmons CA. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol. 2011;20(3):177–82.

    Article  PubMed  Google Scholar 

  56. Kloxin AM, Benton JA, Anseth KS. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials. 2010;31(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  57. Quinlan AM, Billiar KL. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J Biomed Mater Res A. 2012;100(9):2474–82.

    PubMed  Google Scholar 

  58. Kapur NK, Paruchuri V, Aronovitz MJ, Qiao X, Mackey EE, Daly GH, Ughreja K, Levine J, Blanton R, Hill NS. Biventricular remodeling in murine models of right ventricular pressure overload. PLoS One. 2013;8(7):e70802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kapur NK, Wilson S, Yunis AA, Qiao X, Mackey E, Paruchuri V, Baker C, Aronovitz MJ, Karumanchi SA, Letarte M. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation. 2012;125:2728. CIRCULATIONAHA. 111.080002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Aelst LN, Voss S, Carai P, Van Leeuwen R, Vanhoutte D, Sanders-van Wijk S, Eurlings L, Swinnen M, Verheyen FA, Verbeken EK. Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening. Circ Res. 2014;116:425. CIRCRESAHA. 114.304599

    Article  PubMed  CAS  Google Scholar 

  61. Matsui Y, Ikesue M, Danzaki K, Morimoto J, Sato M, Tanaka S, Kojima T, Tsutsui H, Uede T. Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ Res. 2011;108:1328. CIRCRESAHA. 110.235689

    Article  CAS  PubMed  Google Scholar 

  62. Schellings MW, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen RE, d’Hooge J, Van de Werf F, Carmeliet P, Pinto YM. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med. 2009;206(1):113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsuda T, Wu J, Gao E, Joyce J, Markova D, Dong H, Liu Y, Zhang H, Zou Y, Gao F. Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction. J Mol Cell Cardiol. 2012;52(1):273–82.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang H, Wu J, Dong H, Khan SA, Chu M-L, Tsuda T. Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-β signalling. Clin Sci. 2014;126(4):275–88.

    Article  CAS  Google Scholar 

  65. Vanhoutte D, Schellings MW, Götte M, Swinnen M, Herias V, Wild MK, Vestweber D, Chorianopoulos E, Cortés V, Rigotti A. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation. 2007;115(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  66. Li SH, Sun Z, Guo L, Han M, Wood MF, Ghosh N, Alex Vitkin I, Weisel RD, Li RK. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation. J Cell Mol Med. 2012;16(10):2429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Nieuwenhoven FA, Munts C, op’t Veld RC, González A, Díez J, Heymans S, Schroen B, van Bilsen M. Cartilage intermediate layer protein 1 (CILP1): a novel mediator of cardiac extracellular matrix remodelling. Sci Rep. 2017;7(1):16042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kühn B, Del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962.

    Article  PubMed  CAS  Google Scholar 

  69. Polizzotti BD, Arab S, Kühn B. Intrapericardial delivery of gelfoam enables the targeted delivery of Periostin peptide after myocardial infarction by inducing fibrin clot formation. PLoS One. 2012;7(5):e36788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.

    Article  CAS  PubMed  Google Scholar 

  71. Voorhees AP, DeLeon-Pennell KY, Ma Y, Halade GV, Yabluchanskiy A, Iyer RP, Flynn E, Cates CA, Lindsey ML, Han H-C. Building a better infarct: modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol. 2015;85:229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DM Jr, Su H, Gannon J, MacGillivray C. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2006;290(1):H232–H9.

    Article  CAS  PubMed  Google Scholar 

  74. Krishnamurthy P, Peterson JT, Subramanian V, Singh M, Singh K. Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol Cell Biochem. 2009;322(1–2):53–62.

    Article  CAS  PubMed  Google Scholar 

  75. Kandalam V, Basu R, Abraham T, Wang X, Soloway PD, Jaworski DM, Oudit GY, Kassiri Z. TIMP2 deficiency accelerates adverse post–myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res. 2010;106(4):796–808.

    Article  CAS  PubMed  Google Scholar 

  76. Kandalam V, Basu R, Abraham T, Wang X, Awad A, Wang W, Lopaschuk GD, Maeda N, Oudit GY, Kassiri Z. Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol. 2010;299(4):H1012–H23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koskivirta I, Kassiri Z, Rahkonen O, Kiviranta R, Oudit GY, McKee TD, Kytö V, Saraste A, Jokinen E, Liu PP. Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem. 2010;285(32):24487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mizuno T, Mickle DA, Kiani CG, Li R-K. Overexpression of elastin fragments in infarcted myocardium attenuates scar expansion and heart dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2005;288(6):H2819–H27.

    Article  CAS  PubMed  Google Scholar 

  79. Elbert DL. Bottom-up tissue engineering. Curr Opin Biotechnol. 2011;22(5):674–80. https://doi.org/10.1016/j.copbio.2011.04.001. PubMed PMID: 21524904; PMCID: PMC3153565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu L, Liu Y, Li J, Du G, Chen J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact. 2011;10(1):99. https://doi.org/10.1186/1475-2859-10-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    Article  CAS  PubMed  Google Scholar 

  82. Schenke-Layland K, Vasilevski O, Opitz F, König K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol. 2003;143(3):201–8. https://doi.org/10.1016/j.jsb.2003.08.002.

    Article  CAS  PubMed  Google Scholar 

  83. Daley WP, Yamada KM. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr Opin Genet Dev. 2013;23(4):408–14. https://doi.org/10.1016/j.gde.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mabry KM, Payne SZ, Anseth KS. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials. 2016;74:31–41.

    Article  CAS  PubMed  Google Scholar 

  85. Fischer RS, Myers KA, Gardel ML, Waterman CM. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc. 2012;7(11):2056. https://doi.org/10.1038/nprot.2012.127.

    Article  CAS  PubMed  Google Scholar 

  86. Gershlak JR, Resnikoff JI, Sullivan KE, Williams C, Wang RM, Black LD. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem Biophys Res Commun. 2013;439(2):161–6. https://doi.org/10.1016/j.bbrc.2013.08.074. PubMed PMID: 23994333; PMCID: PMC3815602.

    Article  CAS  PubMed  Google Scholar 

  87. Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J. 2008;95(7):3479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gershlak JR, Black LD. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix. Exp Cell Res. 2015;330(2):311–24. https://doi.org/10.1016/j.yexcr.2014.09.007. PubMed PMID: 25220424.

    Article  CAS  PubMed  Google Scholar 

  89. Jia X, Kiick KL. Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci. 2009;9(2):140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ye KY, Black LD. Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction. J Cardiovasc Transl Res. 2011;4(5):575.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhu J. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grover GN, Rao N, Christman KL. Myocardial matrix–polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology. 2013;25(1):014011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Liao M-LC, Levent E, Raad F, Zeidler S, Wingender E. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repairclinical perspective. Circulation. 2017;135(19):1832–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zimmermann W-H, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12(4):452.

    Article  CAS  PubMed  Google Scholar 

  97. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH, Gorman RC, Burdick JA. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci. 2010;107(25):11507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27(36):6064–82.

    Article  CAS  PubMed  Google Scholar 

  101. Thurber AE, Omenetto FG, Kaplan DL. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD III. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater. 2015;10(3):034105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.

    Article  CAS  PubMed  Google Scholar 

  104. Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, Tranquillo RT. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a Rat Infarct model. Stem Cells Transl Med. 2015;4(11):1324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin AV, Walcott GP, Pollard AE. Large cardiac muscle patches engineered from human induced-pluripotent stem cell–derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018;137(16):1712–30.

    Article  PubMed  Google Scholar 

  106. Breckwoldt K, Letuffe-Brenière D, Mannhardt I, Schulze T, Ulmer B, Werner T, Benzin A, Klampe B, Reinsch MC, Laufer S. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat Protoc. 2017;12(6):1177.

    Article  CAS  PubMed  Google Scholar 

  107. Black LD III, Meyers JD, Weinbaum JS, Shvelidze YA, Tranquillo RT. Cell-induced alignment augments twitch force in fibrin gel–based engineered myocardium via gap junction modification. Tissue Eng Part A. 2009;15(10):3099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liau B, Jackman CP, Li Y, Bursac N. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Sci Rep. 2017;7:42290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Williams C, Budina E, Stoppel WL, Sullivan KE, Emani S, Emani SM, Black LD. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95. Epub 2014/12/03. https://doi.org/10.1016/j.actbio.2014.11.035. PubMed PMID: 25463503; PMCID: PMC4308538.

    Article  CAS  PubMed  Google Scholar 

  110. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev. 2016;22(4):298–310.

    Article  CAS  PubMed  Google Scholar 

  111. Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45(1):195–209.

    Article  PubMed  Google Scholar 

  112. Mosadegh B, Xiong G, Dunham S, Min JK. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015;10(3):034002.

    Article  PubMed  CAS  Google Scholar 

  113. Hockaday LA, Duan B, Kang KH, Butcher JT. 3D-printed hydrogel technologies for tissue-engineered heart valves. 3D Print Addit Manuf. 2014;1(3):122–36.

    Article  Google Scholar 

  114. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32(35):9218–30.

    Article  CAS  PubMed  Google Scholar 

  115. Gaetani R, Feyen DA, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PA, Sluijter JP. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–48.

    Article  CAS  PubMed  Google Scholar 

  116. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935. https://www.nature.com/articles/ncomms4935#supplementary-information.

    Article  CAS  PubMed  Google Scholar 

  117. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009;1(3):035001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15(3):353–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bellan LM, Singh SP, Henderson PW, Porri TJ, Craighead HG, Spector JA. Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures. Soft Matter. 2009;5(7):1354–7.

    Article  CAS  Google Scholar 

  122. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.

    Article  CAS  PubMed  Google Scholar 

  123. Gao Q, He Y, J-z F, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15.

    Article  CAS  PubMed  Google Scholar 

  124. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–7.

    Article  CAS  PubMed  Google Scholar 

  125. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A. 2008;14(3):413–21.

    Article  CAS  PubMed  Google Scholar 

  127. Lee EJ, Kim DE, Azeloglu EU, Costa KD. Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng Part A. 2008;14(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  128. Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials. 2018;163:116–27. Epub 2018/02/21. https://doi.org/10.1016/j.biomaterials.2018.02.024. PubMed PMID: 29459321.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  129. Kubo H, Shimizu T, Yamato M, Fujimoto T, Okano T. Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials. 2007;28(24):3508–16. Epub 2007/05/08. https://doi.org/10.1016/j.biomaterials.2007.04.016. PubMed PMID: 17482255.

    Article  CAS  PubMed  Google Scholar 

  130. Seta H, Matsuura K, Sekine H, Yamazaki K, Shimizu T. Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure In Vivo. Sci Rep. 2017;7:45499. Epub 2017/03/31. https://doi.org/10.1038/srep45499. PubMed PMID: 28358136; PMCID: PMC5371992.

  131. Komae H, Sekine H, Dobashi I, Matsuura K, Ono M, Okano T, Shimizu T. Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. J Tissue Eng Regen Med. 2017;11(3):926–35. Epub 2015/01/30. https://doi.org/10.1002/term.1995. PubMed PMID: 25628251.

    Article  PubMed  CAS  Google Scholar 

  132. Shimizu T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90(3):40e–8. https://doi.org/10.1161/hh0302.105722.

    Article  Google Scholar 

  133. Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, Marks NC, Hua EW, Grigoropoulos CP, Conklin BR. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun. 2015;6:7413.

    Article  CAS  PubMed  Google Scholar 

  134. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21. Epub 2008/01/15. doi: https://doi.org/10.1038/nm1684. PubMed PMID: 18193059.

    Article  CAS  PubMed  Google Scholar 

  135. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kitahara H, Yagi H, Tajima K, Okamoto K, Yoshitake A, Aeba R, Kudo M, Kashima I, Kawaguchi S, Hirano A, Kasai M, Akamatsu Y, Oka H, Kitagawa Y, Shimizu H. Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg 2016;22(5):571–9. Epub 2016/02/24. https://doi.org/10.1093/icvts/ivw022. PubMed PMID: 26902852; PMCID: PMC4892160.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307.

    Article  PubMed  CAS  Google Scholar 

  138. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One. 2014;9(2):e90406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Silva A, Rodrigues S, Caldeira J, Nunes A, Sampaio-Pinto V, Resende T, Oliveira M, Barbosa M, Thorsteinsdóttir S, Nascimento D. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials. 2016;104:52–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren D. Black III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daley, M.C., Fenn, S.L., Black, L.D. (2018). Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine. In: Schmuck, E., Hematti, P., Raval, A. (eds) Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, vol 1098. Springer, Cham. https://doi.org/10.1007/978-3-319-97421-7_4

Download citation

Publish with us

Policies and ethics