Skip to main content

Molecular Diagnostics in Pancreatic and Biliary Cytology

  • Chapter
  • First Online:
  • 1158 Accesses

Abstract

Increasing discoveries of the molecular alterations underlying pancreatic and biliary lesions have led to the utilization of cytology samples for molecular testing. Currently in pancreaticobiliary cytology, routine molecular testing has limited diagnostic utility except in the preoperative evaluation of pancreatic cysts and the detection of malignancy in biliary duct brushings. Because of the significant morbidity and mortality associated with pancreatic surgeries, it is of paramount importance to distinguish benign from premalignant/malignant cystic lesions preoperatively. In some institutions, molecular testing is being routinely performed on pancreatic cyst fluid to improve the detection of mucinous cysts, where the detection of a KRAS and/or GNAS mutation is highly specific for a mucinous etiology, and GNAS mutations are diagnostic of intraductal papillary mucinous neoplasm. The addition of molecular testing can be particularly helpful in cases where cytology and/or CEA are noncontributory and thus significantly improves the sensitivity of pancreatic cyst fluid analysis. With bile duct brushings, the addition of fluorescence in situ hybridization (FISH) to cytology is an established ancillary test for the diagnosis of bile duct carcinoma, and next-generation sequencing has also shown promise as a valuable ancillary tool. Late mutations in the progression to malignancy such as p16 (CDKN2A/INK4A) and SMAD4 deletions support a high-risk lesion in both pancreatic cyst fluids and bile duct brushing specimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

Acinar cell carcinoma

CEA:

Carcinoembryonic antigen

DNA:

Deoxyribonucleic acid

EUS:

Endoscopic ultrasound

FISH:

Fluorescence in situ hybridization

FNA:

Fine-needle aspiration

GNAS :

Guanine nucleotide-binding protein, alpha stimulating

IPMN:

Intraductal papillary mucinous neoplasm

KRAS :

Kirsten rat sarcoma viral oncogene homolog

MCN:

Mucinous cystic neoplasm

NGS:

Next-generation sequencing

PanNEC:

Pancreatic neuroendocrine carcinoma

PanNET:

Pancreatic neuroendocrine tumor

PCF:

Pancreatic cyst fluid

PDAC:

Pancreatic ductal adenocarcinoma

pRb:

Retinoblastoma protein

SCA:

Serous cystadenoma

SPN:

Solid pseudopapillary neoplasm

VHL :

von Hippel-Lindau

References

  1. Genevay M, Mino-Kenudson M, Yaeger K, Konstantinidis IT, Ferrone CR, Thayer S, et al. Cytology adds value to imaging studies for risk assessment of malignancy in pancreatic mucinous cysts. Ann Surg. 2011;254(6):977–83.

    Article  Google Scholar 

  2. Khashab MA, Kim K, Lennon AM, Shin EJ, Tignor AS, Amateau SK, et al. Should we do EUS/FNA on patients with pancreatic cysts? The incremental diagnostic yield of EUS over CT/MRI for prediction of cystic neoplasms. Pancreas. 2013;42(4):717–21.

    Article  Google Scholar 

  3. Pitman MB, Deshpande V. Endoscopic ultrasound-guided fine needle aspiration cytology of the pancreas: a morphological and multimodal approach to the diagnosis of solid and cystic mass lesions. Cytopathology. 2007;18(6):331–47.

    Article  CAS  Google Scholar 

  4. Tanaka M, Fernandez-Del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17(5):738–53.

    Article  Google Scholar 

  5. Pitman MB. Pancreatic cyst fluid triage: a critical component of the preoperative evaluation of pancreatic cysts. Cancer Cytopathol. 2013;121(2):57–60.

    Article  Google Scholar 

  6. Jones M, Zheng Z, Wang J, Dudley J, Albanese E, Kadayifci A, et al. Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc. 2016;83(1):140–8.

    Article  Google Scholar 

  7. Kadayifci A, Atar M, Wang JL, Forcione DG, Casey BW, Pitman MB, et al. Value of adding GNAS testing to pancreatic cyst fluid KRAS and carcinoembryonic antigen analysis for the diagnosis of intraductal papillary mucinous neoplasms. Dig Endosc. 2017;29(1):111–7.

    Article  Google Scholar 

  8. Rosenbaum MW, Jones M, Dudley JC, Le LP, Iafrate AJ, Pitman MB. Next-generation sequencing adds value to the preoperative diagnosis of pancreatic cysts. Cancer Cytopathol. 2017;125(1):41–7.

    Article  CAS  Google Scholar 

  9. Singhi AD, Nikiforova MN, Fasanella KE, McGrath KM, Pai RK, Ohori NP, et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res. 2014;20(16):4381–9.

    Article  CAS  Google Scholar 

  10. Reid MD, Lewis MM, Willingham FF, Adsay NV. The evolving role of pathology in new developments, classification, terminology, and diagnosis of pancreatobiliary neoplasms. Arch Pathol Lab Med. 2017;141(3):366–80.

    Article  Google Scholar 

  11. Chai SM, Herba K, Kumarasinghe MP, de Boer WB, Amanuel B, Grieu-Iacopetta F, et al. Optimizing the multimodal approach to pancreatic cyst fluid diagnosis: developing a volume-based triage protocol. Cancer Cytopathol. 2013;121(2):86–100.

    Article  CAS  Google Scholar 

  12. Valsangkar NP, Morales-Oyarvide V, Thayer SP, Ferrone CR, Wargo JA, Warshaw AL, et al. 851 resected cystic tumors of the pancreas: a 33-year experience at the Massachusetts General Hospital. Surgery. 2012;152(3 Suppl 1):S4–12.

    Article  Google Scholar 

  13. Singhi AD, Zeh HJ, Brand RE, Nikiforova MN, Chennat JS, Fasanella KE, et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest Endosc. 2016;83(6):1107–17.e2.

    Article  Google Scholar 

  14. Lilo MT, VandenBussche CJ, Allison DB, Lennon AM, Younes BK, Hruban RH, et al. Serous cystadenoma of the pancreas: potentials and pitfalls of a preoperative cytopathologic diagnosis. Acta Cytol. 2017;61(1):27–33.

    Article  CAS  Google Scholar 

  15. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149(6):1501–10.

    Article  CAS  Google Scholar 

  16. Reid MD, Choi H, Balci S, Akkas G, Adsay V. Serous cystic neoplasms of the pancreas: clinicopathologic and molecular characteristics. Semin Diagn Pathol. 2014;31(6):475–83.

    Article  Google Scholar 

  17. Brugge WR, Lewandrowski K, Lee-Lewandrowski E, Centeno BA, Szydlo T, Regan S, et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology. 2004;126(5):1330–6.

    Article  Google Scholar 

  18. Cizginer S, Turner BG, Bilge AR, Karaca C, Pitman MB, Brugge WR. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas. 2011;40(7):1024–8.

    Article  CAS  Google Scholar 

  19. Pitman MB, Centeno BA, Ali SZ, Genevay M, Stelow E, Mino-Kenudson M, et al. Standardized terminology and nomenclature for pancreatobiliary cytology: the Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2014;42(4):338–50.

    Article  Google Scholar 

  20. Scourtas A, Dudley JC, Brugge WR, Kadayifci A, Mino-Kenudson M, Pitman MB. Preoperative characteristics and cytological features of 136 histologically confirmed pancreatic mucinous cystic neoplasms. Cancer Cytopathol. 2017;125(3):169–77.

    Article  CAS  Google Scholar 

  21. Rockacy M, Khalid A. Update on pancreatic cyst fluid analysis. Ann Gastroenterol. 2013;26(2):122–7.

    PubMed  PubMed Central  Google Scholar 

  22. Singhi AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Chennat JS, Fasanella KE, Papachristou GI, Slivka A, Bartlett DL, Dasyam AK, Hogg M, Lee KK, Marsh JW, Monaco SE, Ohori NP, Pingpank JF, Tsung A, Zureikat AH, Wald AI, Nikiforova MN. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2017. [Epub ahead of print].

    Google Scholar 

  23. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.

    Article  CAS  Google Scholar 

  24. Hruban RH, Pitman MB, Klimstra DS. Tumors of the pancreas. Atlas of tumor pathology, Fourth series, Fascicle 6. Washington, DC: American Registry of Pathology; Armed Forces Institutes of Pathology; 2007.

    Google Scholar 

  25. Pitman MB, Centeno BA, Daglilar ES, Brugge WR, Mino-Kenudson M. Cytological criteria of high-grade epithelial atypia in the cyst fluid of pancreatic intraductal papillary mucinous neoplasms. Cancer Cytopathol. 2014;122(1):40–7.

    Article  Google Scholar 

  26. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

    Article  CAS  Google Scholar 

  27. Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233(3):217–27.

    Article  CAS  Google Scholar 

  28. Zhang ML, Arpin RN, Brugge WR, Forcione DG, Basar O, Pitman MB. Moray micro forceps biopsy improves the diagnosis of specific pancreatic cysts. Cancer Cytopathol. 2018;126(6):414–20.

    Article  CAS  Google Scholar 

  29. Yamao K, Yanagisawa A, Takahashi K, Kimura W, Doi R, Fukushima N, et al. Clinicopathological features and prognosis of mucinous cystic neoplasm with ovarian-type stroma: a multi-institutional study of the Japan pancreas society. Pancreas. 2011;40(1):67–71.

    Article  CAS  Google Scholar 

  30. Reddy RP, Smyrk TC, Zapiach M, Levy MJ, Pearson RK, Clain JE, et al. Pancreatic mucinous cystic neoplasm defined by ovarian stroma: demographics, clinical features, and prevalence of cancer. Clin Gastroenterol Hepatol. 2004;2(11):1026–31.

    Article  Google Scholar 

  31. Pittman ME, Rao R, Hruban RH. Classification, morphology, molecular pathogenesis, and outcome of premalignant lesions of the pancreas. Arch Pathol Lab Med. 2017;141(12):1606–14.

    Article  Google Scholar 

  32. Hartley CP, Mahajan AM, Selvaggi SM, Rehrauer WM. FNA smears of pancreatic ductal adenocarcinoma are superior to formalin-fixed paraffin-embedded tissue as a source of DNA: comparison of targeted KRAS amplification and genotyping in matched preresection and postresection samples. Cancer Cytopathol. 2017;125(11):838–47.

    Article  CAS  Google Scholar 

  33. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  Google Scholar 

  34. van Heek T, Rader AE, Offerhaus GJ, McCarthy DM, Goggins M, Hruban RH, et al. K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. Am J Clin Pathol. 2002;117(5):755–65.

    Article  Google Scholar 

  35. Xiao W, Hong H, Awadallah A, Zhou L, Xin W. Utilization of CDX2 expression in diagnosing pancreatic ductal adenocarcinoma and predicting prognosis. PLoS One. 2014;9(1):e86853.

    Article  Google Scholar 

  36. Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak MM, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol. 2018;4(3):e173420.

    Article  Google Scholar 

  37. Johansson H, Andersson R, Bauden M, Hammes S, Holdenrieder S, Ansari D. Immune checkpoint therapy for pancreatic cancer. World J Gastroenterol. 2016;22(43):9457–76.

    Article  CAS  Google Scholar 

  38. Lee DW, Kim MK, Kim HG. Diagnosis of pancreatic neuroendocrine tumors. Clin Endosc. 2017;50(6):537–45.

    Article  Google Scholar 

  39. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    Article  CAS  Google Scholar 

  40. Park JK, Paik WH, Lee K, Ryu JK, Lee SH, Kim YT. DAXX/ATRX and MEN1 genes are strong prognostic markers in pancreatic neuroendocrine tumors. Oncotarget. 2017;8(30):49796–806.

    Article  Google Scholar 

  41. Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol. 2014;31(6):498–511.

    Article  Google Scholar 

  42. Sigel CS, Klimstra DS. Cytomorphologic and immunophenotypical features of acinar cell neoplasms of the pancreas. Cancer Cytopathol. 2013;121(8):459–70.

    Article  Google Scholar 

  43. Abraham SC, TT W, Hruban RH, Lee JH, Yeo CJ, Conlon K, et al. Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am J Pathol. 2002;160(3):953–62.

    Article  CAS  Google Scholar 

  44. Ogawa B, Okinaga K, Obana K, Nakamura K, Hattori T, Ito T, et al. Pancreatoblastoma treated by delayed operation after effective chemotherapy. J Pediatr Surg. 2000;35(11):1663–5.

    Article  CAS  Google Scholar 

  45. Burnett AS, Calvert TJ, Chokshi RJ. Sensitivity of endoscopic retrograde cholangiopancreatography standard cytology: 10-y review of the literature. J Surg Res. 2013;184(1):304–11.

    Article  Google Scholar 

  46. Nanda A, Brown JM, Berger SH, Lewis MM, Barr Fritcher EG, Gores GJ, et al. Triple modality testing by endoscopic retrograde cholangiopancreatography for the diagnosis of cholangiocarcinoma. Therap Adv Gastroenterol. 2015;8(2):56–65.

    Article  Google Scholar 

  47. Boldorini R, Paganotti A, Sartori M, Allegrini S, Miglio U, Orsello M, et al. Fluorescence in situ hybridisation in the cytological diagnosis of pancreatobiliary tumours. Pathology. 2011;43(4):335–9.

    Article  Google Scholar 

  48. Kipp BR, Fritcher EG, Clayton AC, Gores GJ, Roberts LR, Zhang J, et al. Comparison of KRAS mutation analysis and FISH for detecting pancreatobiliary tract cancer in cytology specimens collected during endoscopic retrograde cholangiopancreatography. J Mol Diagn. 2010;12(6):780–6.

    Article  CAS  Google Scholar 

  49. Kipp BR, Stadheim LM, Halling SA, Pochron NL, Harmsen S, Nagorney DM, et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol. 2004;99(9):1675–81.

    Article  Google Scholar 

  50. Levy MJ, Baron TH, Clayton AC, Enders FB, Gostout CJ, Halling KC, et al. Prospective evaluation of advanced molecular markers and imaging techniques in patients with indeterminate bile duct strictures. Am J Gastroenterol. 2008;103(5):1263–73.

    Article  Google Scholar 

  51. Barr Fritcher EG, Voss JS, Brankley SM, Campion MB, Jenkins SM, Keeney ME, et al. An optimized set of fluorescence in situ hybridization probes for detection of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology. 2015;149(7):1813–24.e1.

    Article  CAS  Google Scholar 

  52. Dudley JC, Zheng Z, McDonald T, Le LP, Dias-Santagata D, Borger D, et al. Next-generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J Mol Diagn. 2016;18(1):124–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Bishop Pitman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, M.L., Pitman, M.B. (2019). Molecular Diagnostics in Pancreatic and Biliary Cytology. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics