Skip to main content

Molecular Diagnostics in Lung Cytology

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology
  • 1261 Accesses

Abstract

Cytology specimens obtained by minimally invasive procedures have become an increasingly important player for both the diagnosis and ancillary molecular testing in the work-up of patients with lung cancer. The identification of targetable genomic alterations is necessary to guide optimal therapy selection, and tumor PD-L1 testing has also emerged as a promising biomarker for selection of patients most likely to benefit from immune checkpoint inhibitor therapy. Given the ever-evolving landscape of ancillary molecular and biomarker testing in lung cancer, multiple guideline statements on the topic have been published over the past 5 years. Recognition of what specimens to test, how the testing should be performed, and which targets to test for will help both the cytopathologist and molecular pathologist to best utilize the limited cellular materials present in lung cancer cytology specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT-1 :

AKT serine/threonine kinase 1

ALK :

anaplastic lymphoma kinase or ALK receptor tyrosine kinase

ASCO:

American Society of Clinical Oncology

ATS:

American Thoracic Society

BRAF :

v-raf murine sarcoma viral oncogene homolog B

CAP/IASLC/AMP:

College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology

DDR2 :

discoidin domain receptor tyrosine kinase 2

EBUS-TBNA:

endobronchial ultrasound-guided transbronchial needle aspiration

EGFR :

epidermal growth factor receptor

ENB:

electromagnetic navigational bronchoscopy

ERBB2 :

erb-b2 receptor tyrosine kinase 2 (HER2)

FFPE:

formalin-fixed paraffin-embedded

FGFR1–4 :

Fibroblast growth factor receptor 1–4

FISH:

fluorescence in situ hybridization

FNA:

fine-needle aspiration

IASLC/ATS/ERS:

International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society

IHC:

immunohistochemistry

KIT :

KIT proto-oncogene receptor tyrosine kinase

KRAS :

Kirsten rat sarcoma viral oncogene homolog

MEK1 :

mitogen-activated protein kinase kinase 1

MET :

MET proto-oncogene, receptor tyrosine kinase

MTOR :

mechanistic target of rapamycin

NCCN:

National Comprehensive Cancer Network

NF1 :

Neurofibromin 1

NGS:

next-generation sequencing

NRAS :

neuroblastoma RAS viral oncogene

NRG1 :

Neuregulin 1

NSCLC:

non-small cell lung cancer

NTRK1–3 :

neurotrophic tyrosine kinase receptor, type 1–3

PCR:

polymerase chain reaction

PD-1:

programmed cell death protein 1 (CD279)

PD-L1:

programmed death-ligand 1 (CD274)

PDGFRA :

platelet-derived growth factor receptor alpha

PIK3CA :

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

RET :

proto-oncogene tyrosine-protein kinase receptor Ret

RIT1 :

Ras-like without CAAX 1

ROS1 :

ROS proto-oncogene 1, receptor tyrosine kinase

TKI :

tyrosine kinase inhibitor

TPS:

tumor proportion score

TSC1/2 :

tuberous sclerosis 1/2 (TSC1)

References

  1. National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) program. Cancer Stat Facts: Lung and Bronchus Cancer. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed April 10, 2018.

  2. Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.

    Article  Google Scholar 

  3. Travis WD, Brambilla E, Burke AP, et al., editors. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: World Health Organization; 2015.

    Google Scholar 

  4. Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006.

    Article  Google Scholar 

  5. Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience. Arch Pathol Lab Med. 2016;140:1191–9.

    Article  Google Scholar 

  6. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137:828–60.

    Article  CAS  Google Scholar 

  7. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142:321–46.

    Article  Google Scholar 

  8. Kalemkerian GP, Narula N, Kennedy EB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol. 2018;36:911–9.

    Article  CAS  Google Scholar 

  9. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines). Non-Small Cell Lung Cancer (Version 3.2018). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed April 10, 2018.

  10. Layfield LJ, Roy-Chowdhuri S, Baloch Z, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: the papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol. 2016;44:1000–9.

    Article  Google Scholar 

  11. Zakowski MF. Analytic inquiry: molecular testing in lung cancer. Cancer Cytopathol. 2017;125:470–6.

    Article  Google Scholar 

  12. Lim C, Tsao MS, Le LW, et al. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Ann Oncol. 2015;26:1415–21.

    Article  CAS  Google Scholar 

  13. DiStasio M, Chen Y, Rangachari D, Costa DB, Heher YK, VanderLaan PA. Molecular testing turnaround time for non-small cell lung cancer in routine clinical practice confirms feasibility of CAP/IASLC/AMP guideline recommendations: a single-center analysis. Clin Lung Cancer. 2017;18:e349–56.

    Article  Google Scholar 

  14. VanderLaan PA, Chen Y, DiStasio M, Rangachari D, Costa DB, Heher YK. Molecular testing turnaround time in non-small-cell lung cancer: monitoring a moving target. Clin Lung Cancer. 2018;19:e589–90.

    Article  CAS  Google Scholar 

  15. Yamaguchi N, Vanderlaan PA, Folch E, et al. Smoking status and self-reported race affect the frequency of clinically relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice. Lung Cancer. 2013;82:31–7.

    Article  Google Scholar 

  16. VanderLaan PA, Rangachari D, Majid A, et al. Tumor biomarker testing in non-small-cell lung cancer: a decade of change. Lung Cancer. 2018;116:90–5.

    Article  Google Scholar 

  17. Suh JH, Johnson A, Albacker L, et al. Comprehensive genomic profiling facilitates implementation of the National Comprehensive Cancer Network Guidelines for lung cancer biomarker testing and identifies patients who may benefit from enrollment in mechanism-driven clinical trials. Oncologist. 2016;21:684–91.

    Article  CAS  Google Scholar 

  18. Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7:596–609.

    Article  CAS  Google Scholar 

  19. Collisson EA, Campbell JD, Brooks AN, et al. Cancer genome atlas research network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  CAS  Google Scholar 

  20. Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. 2015;10:768–77.

    Article  CAS  Google Scholar 

  21. Illei PB, Belchis D, Tseng LH, et al. Clinical mutational profiling of 1006 lung cancers by next generation sequencing. Oncotarget. 2017;8:96684–96.

    Article  Google Scholar 

  22. Barlesi F, Mazieres J, Merlio JP, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet. 2016;387:1415–26.

    Article  CAS  Google Scholar 

  23. Sheikine Y, Rangachari D, McDonald DC, et al. EGFR testing in advanced non-small-cell lung cancer, a mini-review. Clin Lung Cancer. 2016;17:483–92.

    Article  CAS  Google Scholar 

  24. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377:849–61.

    Article  CAS  Google Scholar 

  25. Tsao M, Hirsch FR, Yatabe Y. IASLC Atlas of ALK and ROS1 Testing in Lung Cancer. 2nd ed. North Fort Meyers, FL: Editorial Rx Press; 2016.

    Google Scholar 

  26. Minca EC, Lanigan CP, Reynolds JP, et al. ALK status testing in non-small-cell lung carcinoma by FISH on ThinPrep slides with cytology material. J Thorac Oncol. 2014;9:464–8.

    Article  CAS  Google Scholar 

  27. Savic S, Bode B, Diebold J, et al. Detection of ALK-positive non-small-cell lung cancers on cytological specimens: high accuracy of immunocytochemistry with the 5A4 clone. J Thorac Oncol. 2013;8:1004–11.

    Article  CAS  Google Scholar 

  28. Le Quesne J, Maurya M, Yancheva SG, et al. A comparison of immunohistochemical assays and FISH in detecting the ALK translocation in diagnostic histological and cytological lung tumor material. J Thorac Oncol. 2014;9:769–74.

    Article  Google Scholar 

  29. Soo RA, Stone ECA, Cummings KM, et al. Scientific advances in thoracic oncology 2016. J Thorac Oncol. 2017;12:1183–209.

    Article  Google Scholar 

  30. Calvayrac O, Pradines A, Pons E, Mazières J, Guibert N. Molecular biomarkers for lung adenocarcinoma. Eur Respir J. 2017;49:1601734.

    Article  Google Scholar 

  31. Vlajnic T, Savic S, Barascud A, et al. Detection of ROS1-positive non-small cell lung cancer on cytological specimens using immunocytochemistry. Cancer Cytopathol. 2018;126:421–9.

    Article  CAS  Google Scholar 

  32. Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer. J Thorac Oncol. 2017;12:1611–25.

    Article  Google Scholar 

  33. Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12:15–26.

    Article  Google Scholar 

  34. Ferrara R, Auger N, Auclin E, Besse B. Clinical and translational implications of RET rearrangements in non-small cell lung cancer. J Thorac Oncol. 2018;13:27–45.

    Article  Google Scholar 

  35. Ferrara R, Mezquita L, Besse B. Progress in the management of advanced thoracic malignancies in 2017. J Thorac Oncol. 2018;13:301–22.

    Article  Google Scholar 

  36. Kerr KM. The PD-L1 immunohistochemistry biomarker: two steps forward, one step back? J Thorac Oncol. 2018;13:291–4.

    Article  Google Scholar 

  37. Mino-Kenudson M. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Transl Lung Cancer Res. 2017;6:570–87.

    Article  CAS  Google Scholar 

  38. Tsao MS, Kerr KM, Dacic S, Yatabe Y, Hirsch FR. IASLC Atlas of PD-L1 immunohistochemistry testing in lung cancer. 1st ed. North Fort Meyers, FL: Editorial Rx Press; 2017.

    Google Scholar 

  39. Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12:208–22.

    Article  Google Scholar 

  40. Hendry S, Byrne DJ, Wright GM, et al. Comparison of four PD-L1 immunohistochemical assays in lung cancer. J Thorac Oncol. 2018;13:367–76.

    Article  Google Scholar 

  41. Torous VF, Rangachari D, Gallant B, et al. PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with non-small cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option? J Am Soc Cytopathol. 2018;7:133–41.

    Article  Google Scholar 

  42. Noll B, Wang WL, Gong Y, et al. Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations. Cancer Cytopathol. 2018;126:342–52.

    Article  CAS  Google Scholar 

  43. Russell-Goldman E, Kravets S, Dahlberg SE, Sholl LM, Vivero M. Cytologic-histologic correlation of programmed death-ligand 1 immunohistochemistry in lung carcinomas. Cancer Cytopathol. 2018;126:253–63.

    Article  CAS  Google Scholar 

  44. Wang H, Agulnik J, Kasymjanova G, et al. Cytology cell blocks are suitable for immunohistochemical testing for PD-L1 in lung cancer. Ann Oncol. 2018;29:1417–22.

    Article  CAS  Google Scholar 

  45. Ilie M, Juco J, Huang L, Hofman V, Khambata-Ford S, Hofman P. Use of the 22C3 anti-programmed death-ligand 1 antibody to determine programmed death-ligand 1 expression in cytology samples obtained from non-small cell lung cancer patients. Cancer Cytopathol. 2018;126:264–74.

    Article  CAS  Google Scholar 

  46. Skov BG, Skov T. Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol. 2017;25:453–9.

    Article  CAS  Google Scholar 

  47. Heymann JJ, Bulman WA, Swinarski D, et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol. 2017;125:896–907.

    Article  CAS  Google Scholar 

  48. Carbone DP, Reck M, Paz-Ares L, et al. First-line Nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.

    Article  CAS  Google Scholar 

  49. Silvestri GA, Vachani A, Whitney D, et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med. 2015;373:243–51.

    Article  CAS  Google Scholar 

  50. Mazzone PJ, Sears CR, Arenberg DA, et al. Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An Official American Thoracic Society Policy Statement. Am J Respir Crit Care Med. 2017;196:e15–29.

    Article  Google Scholar 

  51. Roy-Chowdhuri S, Aisner DL, Allen TC, et al. Biomarker testing in lung carcinoma cytology specimens: a perspective from members of the pulmonary pathology society. Arch Pathol Lab Med. 2016;140:1267–72.

    Article  CAS  Google Scholar 

  52. Jain D, Roy-Chowdhuri S. Molecular pathology of lung cancer cytology specimens: a concise review. Arch Pathol Lab Med. 2018;142:1127–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. VanderLaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

VanderLaan, P.A. (2019). Molecular Diagnostics in Lung Cytology. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics