Skip to main content

Eisenstein Series of Weight One, q-Averages of the 0-Logarithm and Periods of Elliptic Curves

  • Conference paper
  • First Online:
Geometry, Algebra, Number Theory, and Their Information Technology Applications (GANITA 2016)

Abstract

For any elliptic curve E over \(k\subset {\mathbb {R}}\) with \(E({\mathbb {C}})={\mathbb {C}}^\times /q^{{\mathbb {Z}}}\), \(q=e^{2\pi iz}, \mathrm{Im}(z)>0\), we study the q-average \(D_{0,q}\), defined on \(E({\mathbb {C}})\), of the function \(D_0(z) = \mathrm{Im}(z/(1-z))\). Let \(\Omega ^+(E)\) denote the real period of E. We show that there is a rational function \(R \in {\mathbb {Q}}(X_1(N))\) such that for any non-cuspidal real point \(s\in X_1(N)\) (which defines an elliptic curve E(s) over \({\mathbb {R}}\) together with a point P(s) of order N), \(\pi D_{0,q}(P(s))\) equals \(\Omega ^+(E(s))R(s)\). In particular, if s is \({\mathbb {Q}}\)-rational point of \(X_1(N)\), a rare occurrence according to Mazur, R(s) is a rational number.

To Kumar Murty: Hyapi aravai

D. R. Grayson and D. Ramakrishnan Research supported by the NSF; D. Ramakrishnan supported by a Simons Fellowship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. H. Abel, Untersuchungen über die Reihe:\(1 + {m \over 1} \cdot x + { m \cdot (m-1) \over 1 \cdot 2} \cdot x^2 + {m \cdot (m-1) \cdot (m-2) \over 1 \cdot 2 \cdot 3 } \cdot x^3 + \cdots {u.s.w.}\), Journal für Math. (1826), 311–339.

    Google Scholar 

  2. A. Beilinson, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Contemporary Mathematics, vol. 55, part I, American Math. Soc., 1986, pp. 1–34.

    Google Scholar 

  3. Spencer J. Bloch, Higher regulators, algebraic \(K\)-theory, and zeta functions of elliptic curves, Amer. Math. Soc., Providence, 2000.

    Google Scholar 

  4. S. Bloch and D. Grayson, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Contemporary Mathematics, vol. 55, Amer. Math. Soc., Providence, 1983, pp. 79–88.

    Google Scholar 

  5. C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q}\): wild \(3\)-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939.

    Article  MathSciNet  Google Scholar 

  6. E. Cahen, Sur la fonction \(\zeta (s)\) de Riemann et sur des fonctions analogues, Ann. de l’École Normale 11 (ser. 3) (1894), 75–164 .

    Google Scholar 

  7. P. Deligne, N. Rapoport, Modular functions of One Variable II, Lecture Notes in Mathematics, vol. 349, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  8. C. Deninger, Higher Regulators and Hecke \(L\)-series of imaginary quadratic fields: I, Inventiones Mathematicae 96 (1989), 1–69.

    Article  MathSciNet  Google Scholar 

  9. V. G. Drinfeld, Two theorems on modular curves, Funktsionalnii anal. i evo Prilozhenie 2 (1973), 83–84.

    Google Scholar 

  10. E. Hecke, Darstellung von Klassenzahlen als Perioden von Integralen 3. Gattung aus dem Gebiet der elliptischen Modulfunctionen, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 4 (1925), 211–223.

    Article  MathSciNet  Google Scholar 

  11. E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 5 (1927), 199–224.

    Article  MathSciNet  Google Scholar 

  12. N. Katz, \(p\)-adic interpolation of real analytic Eisenstein series, Annals of Mathematics 104 (1976), 459.

    Article  MathSciNet  Google Scholar 

  13. N. Katz, The Eisenstein measure and p-adic interpolation, American Journal of Mathematics 99 (1977), 238–311.

    Article  MathSciNet  Google Scholar 

  14. N. Katz, \(p\)-adic \(L\)-functions for CM-fields, Inventiones Mathematicae 49 (1978).

    Article  MathSciNet  Google Scholar 

  15. N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108 (1985), 1–514.

    Google Scholar 

  16. V. Kolyvagin, Finiteness of \(E(\mathbb{Q})\) and \({Sh}(E,\mathbb{Q})\)  for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522–540, 670–671.

    Google Scholar 

  17. D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193–237.

    Article  MathSciNet  Google Scholar 

  18. S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1976.

    Google Scholar 

  19. B. Mazur, Rational Isogenies of prime degree, Inventiones Mathematicae 44 (1978), 129–162.

    Article  MathSciNet  Google Scholar 

  20. J.-F. Mestre and N. Schappacher, Séries de Kronecker et fonctions  \(L\) des puissances symétriques de courbes elliptiques sur \(\mathbb{Q}\), Arithmetic Algebraic Geometry (proceedings of a conference on Texel Island, April, 1989) (G. van der Geer, F. Oort, and J. Steenbrink, eds.), Progress in Mathematics, vol. 89, Birkhäuser, Boston, Basel, Berlin, 1991, pp. 209–246, [516.35 Ar462].

    Google Scholar 

  21. D. Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Proceedings of a Summer Research Conference held June 12–18, 1983, in Boulder, Colorado, Contemporary Mathematics 55, American Mathematical Society, Providence, Rhode Island, pp. 371–376.

    Google Scholar 

  22. B. Schoeneberg, Elliptic Modular Functions (1974), Springer, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  23. G. Shimura, Introduction to the arithmetic theory of automorphic functions (1971), Iwanami Shoten, Publishers, and Princeton University Press.

    Google Scholar 

  24. J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

    Book  Google Scholar 

  25. R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553–572.

    Article  MathSciNet  Google Scholar 

  26. A. Weil, Elliptic Functions according to Eisenstein and Kronecker, Ergebnisse series 88, Springer, Berlin, Heidelberg, New York, 1976.

    Chapter  Google Scholar 

  27. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443–551.

    Article  MathSciNet  Google Scholar 

  28. D. Zagier, Polylogarithms, Dedekind Zeta functions and the algebraic  \(K\)-theory of fields, Progress in Math. 89 (1991), 391–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinakar Ramakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grayson, D.R., Ramakrishnan, D. (2018). Eisenstein Series of Weight One, q-Averages of the 0-Logarithm and Periods of Elliptic Curves. In: Akbary, A., Gun, S. (eds) Geometry, Algebra, Number Theory, and Their Information Technology Applications. GANITA 2016. Springer Proceedings in Mathematics & Statistics, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-319-97379-1_11

Download citation

Publish with us

Policies and ethics