Skip to main content

Abstract

Tuberculosis (TB) is a deadly infectious disease of humans caused by Mycobacterium tuberculosis (Mtb). In 2016, there were about 10 million new cases and 1.8 million deaths attributed to TB worldwide (WHO Report 2017). In addition, about a third of the world population has asymptomatic latent Mtb infection (LTBI), of which about 10% can reactivate to symptomatic active TB in their lifetime dependent upon their immune status. However, in a population, Mtb infection results in a heterogeneous outcome, ranging from complete bacterial clearance to the establishment of LTBI or development of a full-blown disease. A key feature of TB pathogenesis is granuloma formation, which has been a subject of intense research for several decades. Although granulomas are thought to protect the host by containing Mtb in a confined area and preventing bacterial dissemination to other parts of the body, it is also likely to act as a safe-harbor for the infecting bacteria to thrive and persist in a niche with a compromised immunity. This chapter summarizes various cellular events underlying TB pathogenesis and the role of different types of immune cells involved in granuloma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, Y., Nakamura, M., Oshika, Y., Hatanaka, H., Tokunaga, T., Ohkubo, Y., et al. (2001). Serum levels of vascular endothelial growth factor and cavity formation in active pulmonary tuberculosis. Respiration, 68(5), 496–500.

    Article  CAS  PubMed  Google Scholar 

  • Agostini, C., Cassatella, M., Zambello, R., Trentin, L., Gasperini, S., Perin, A., et al. (1998). Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. Journal of Immunology, 161(11), 6413–6420.

    CAS  Google Scholar 

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801.

    Article  CAS  PubMed  Google Scholar 

  • Alcais, A., Fieschi, C., Abel, L., & Casanova, J. L. (2005). Tuberculosis in children and adults: Two distinct genetic diseases. The Journal of Experimental Medicine, 202(12), 1617–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algood, H. M., Chan, J., & Flynn, J. L. (2003). Chemokines and tuberculosis. Cytokine & Growth Factor Reviews, 14(6), 467–477.

    Article  CAS  Google Scholar 

  • Almeida Cde, S., Abramo, C., Alves, C. C., Mazzoccoli, L., Ferreira, A. P., & Teixeira, H. C. (2009). Anti-mycobacterial treatment reduces high plasma levels of CXC-chemokines detected in active tuberculosis by cytometric bead array. Memórias do Instituto Oswaldo Cruz, 104(7), 1039–1041.

    Article  PubMed  Google Scholar 

  • Aronis, K. N., Chamberland, J. P., & Mantzoros, C. S. (2013). GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism, 62(9), 1279–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bafica, A., Scanga, C. A., Feng, C. G., Leifer, C., Cheever, A., & Sher, A. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. The Journal of Experimental Medicine, 202(12), 1715–1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balu, S., Reljic, R., Lewis, M. J., Pleass, R. J., McIntosh, R., van Kooten, C., et al. (2011). A novel human IgA monoclonal antibody protects against tuberculosis. Journal of Immunology, 186(5), 3113–3119.

    Article  CAS  Google Scholar 

  • Bao, Y., Liu, X., Han, C., Xu, S., Xie, B., Zhang, Q., et al. (2014). Identification of IFN-gamma- producing innate B cells. Cell Research, 24(2), 161–176.

    Article  CAS  PubMed  Google Scholar 

  • Benator, D., Bhattacharya, M., Bozeman, L., Burman, W., Cantazaro, A., Chaisson, R., et al. (2002). Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: A randomised clinical trial. Lancet, 360(9332), 528–534.

    Article  PubMed  Google Scholar 

  • Berry, M. P., Graham, C. M., McNab, F. W., Xu, Z., Bloch, S. A., Oni, T., et al. (2010). An interferon- inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 466(7309), 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezuidenhout, J., Roberts, T., Muller, L., van Helden, P., & Walzl, G. (2009). Pleural tuberculosis in patients with early HIV infection is associated with increased TNF-alpha expression and necrosis in granulomas. PLoS One, 4(1), e4228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhatt, K., & Salgame, P. (2007). Host innate immune response to Mycobacterium tuberculosis. Journal of Clinical Immunology, 27(4), 347–362.

    Article  CAS  PubMed  Google Scholar 

  • Bodnar, K. A., Serbina, N. V., & Flynn, J. L. (2001). Fate of Mycobacterium tuberculosis within murine dendritic cells. Infection and Immunity, 69(2), 800–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson-Dupuis, S., El Baghdadi, J., Parvaneh, N., Bousfiha, A., Bustamante, J., Feinberg, J., et al. (2011). IL-12Rbeta1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS One, 6(4), e18524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonecini-Almeida, M. G., Ho, J. L., Boechat, N., Huard, R. C., Chitale, S., Doo, H., et al. (2004). Down- modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infection and Immunity, 72(5), 2628–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boselli, D., Losana, G., Bernabei, P., Bosisio, D., Drysdale, P., Kiessling, R., et al. (2007). IFN- gamma regulates Fas ligand expression in human CD4+ T lymphocytes and controls their anti-mycobacterial cytotoxic functions. European Journal of Immunology, 37(8), 2196–2204.

    Article  CAS  PubMed  Google Scholar 

  • Bourigault, M. L., Vacher, R., Rose, S., Olleros, M. L., Janssens, J. P., Quesniaux, V. F., et al. (2013). Tumor necrosis factor neutralization combined with chemotherapy enhances Mycobacterium tuberculosis clearance and reduces lung pathology. American Journal of Clinical and Experimental Immunology, 2(1), 124–134.

    PubMed  PubMed Central  Google Scholar 

  • Bowdish, D. M., Sakamoto, K., Kim, M. J., Kroos, M., Mukhopadhyay, S., Leifer, C. A., et al. (2009). MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathogens, 5(6), e1000474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulut, Y., Michelsen, K. S., Hayrapetian, L., Naiki, Y., Spallek, R., Singh, M., et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals. The Journal of Biological Chemistry, 280(22), 20961–20967.

    Article  CAS  PubMed  Google Scholar 

  • Cadena, A. M., Fortune, S. M., & Flynn, J. L. (2017). Heterogeneity in tuberculosis. Nature Reviews. Immunology, 17(11), 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona, J., Cruz, A., Moreira-Teixeira, L., Sousa, C., Sousa, J., Osorio, N. S., et al. (2013). Mycobacterium tuberculosis strains are differentially recognized by TLRs with an impact on the immune response. PLoS One, 8(6), e67277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassatella, M. A., Gasperini, S., Bovolenta, C., Calzetti, F., Vollebregt, M., Scapini, P., et al. (1999). Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: Evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood, 94(8), 2880–2889.

    CAS  PubMed  Google Scholar 

  • Chakravarty, S. D., Zhu, G., Tsai, M. C., Mohan, V. P., Marino, S., Kirschner, D. E., et al. (2008). Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infection and Immunity, 76(3), 916–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, J., Mehta, S., Bharrhan, S., Chen, Y., Achkar, J. M., Casadevall, A., et al. (2014). The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Seminars in Immunology, 26(6), 588–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S. B., Dey, S., Shi, W. Y., Thomas, K., & Hutchins, G. M. (1997). Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology, 7(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Collins, H. L., & Kaufmann, S. H. (2001). The many faces of host responses to tuberculosis. Immunology, 103(1), 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condos, R., Rom, W. N., Liu, Y. M., & Schluger, N. W. (1998). Local immune responses correlate with presentation and outcome in tuberculosis. American Journal of Respiratory and Critical Care Medicine, 157(3 Pt 1), 729–735.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, A. M. (2009). Cell-mediated immune responses in tuberculosis. Annual Review of Immunology, 27, 393–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, A. M., Mayer-Barber, K. D., & Sher, A. (2011). Role of innate cytokines in mycobacterial infection. Mucosal Immunology, 4(3), 252–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz, A., Fraga, A. G., Fountain, J. J., Rangel-Moreno, J., Torrado, E., Saraiva, M., et al. (2010). Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. The Journal of Experimental Medicine, 207(8), 1609–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cun, X., Xie, J., Lin, S., Fu, N., Deng, S., Xie, Q., et al. (2015). Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Proliferation, 48(4), 405–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, E. V., Barbi, J., Yang, H. Y., Jinasena, D., Yu, H., Zheng, Y., et al. (2011). Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 146(5), 772–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, T. M., Oxtoby, M. J., Pinto, E., & Moreno, E. (1981). The immune spectrum in patients with pulmonary tuberculosis. The American Review of Respiratory Disease, 123(5), 556–559.

    CAS  PubMed  Google Scholar 

  • Daniel, J., Maamar, H., Deb, C., Sirakova, T. D., & Kolattukudy, P. E. (2011). Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathogens, 7(6), e1002093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta, M., Via, L. E., Kamoun, W. S., Liu, C., Chen, W., Seano, G., et al. (2015). Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proceedings of the National Academy of Sciences of the United States of America, 112(6), 1827–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, J. M., & Ramakrishnan, L. (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 136(1), 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Valliere, S., Abate, G., Blazevic, A., Heuertz, R. M., & Hoft, D. F. (2005). Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infection and Immunity, 73(10), 6711–6720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desel, C., Dorhoi, A., Bandermann, S., Grode, L., Eisele, B., & Kaufmann, S. H. (2011). Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. The Journal of Infectious Diseases, 204(10), 1573–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhiman, R., Indramohan, M., Barnes, P. F., Nayak, R. C., Paidipally, P., Rao, L. V., et al. (2009). IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. Journal of Immunology, 183(10), 6639–6645.

    Article  CAS  Google Scholar 

  • Dhiman, R., Venkatasubramanian, S., Paidipally, P., Barnes, P. F., Tvinnereim, A., & Vankayalapati, R. (2014). Interleukin 22 inhibits intracellular growth of Mycobacterium tuberculosis by enhancing calgranulin a expression. The Journal of Infectious Diseases, 209(4), 578–587.

    Article  CAS  PubMed  Google Scholar 

  • Divangahi, M., Mostowy, S., Coulombe, F., Kozak, R., Guillot, L., Veyrier, F., et al. (2008). NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. Journal of Immunology, 181(10), 7157–7165.

    Article  CAS  Google Scholar 

  • Domingo-Gonzalez, R., Prince, O., Cooper, A., & Khader, S. A. (2016). Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiology Spectrum, 4(5). https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016.

  • du Preez, I., & Loots, D. T. (2013). New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis (Edinburgh, Scotland), 93(3), 330–337.

    Article  CAS  Google Scholar 

  • Encinales, L., Zuniga, J., Granados-Montiel, J., Yunis, M., Granados, J., Almeciga, I., et al. (2010). Humoral immunity in tuberculin skin test anergy and its role in high-risk persons exposed to active tuberculosis. Molecular Immunology, 47(5), 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  • Fahey, T. J., 3rd, Tracey, K. J., Tekamp-Olson, P., Cousens, L. S., Jones, W. G., Shires, G. T., et al. (1992). Macrophage inflammatory protein 1 modulates macrophage function. Journal of Immunology, 148(9), 2764–2769.

    CAS  Google Scholar 

  • Feng, L., Li, L., Liu, Y., Qiao, D., Li, Q., Fu, X., et al. (2011). B lymphocytes that migrate to tuberculous pleural fluid via the SDF-1/CXCR4 axis actively respond to antigens specific for Mycobacterium tuberculosis. European Journal of Immunology, 41(11), 3261–3269.

    Article  CAS  PubMed  Google Scholar 

  • Fielding, C. A., McLoughlin, R. M., McLeod, L., Colmont, C. S., Najdovska, M., Grail, D., et al. (2008). IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. Journal of Immunology, 181(3), 2189–2195.

    Article  CAS  Google Scholar 

  • Flynn, J. L., & Chan, J. (2005). What’s good for the host is good for the bug. Trends in Microbiology, 13(3), 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, J. L., Chan, J., & Lin, P. L. (2011). Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunology, 4(3), 271–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J., & Dye, C. (2003). Tuberculosis. Lancet, 362(9387), 887–899.

    Article  PubMed  Google Scholar 

  • Garner, B., Mellor, H. R., Butters, T. D., Dwek, R. A., & Platt, F. M. (2002). Modulation of THP-1 macrophage and cholesterol-loaded foam cell apolipoprotein E levels by glycosphingolipids. Biochemical and Biophysical Research Communications, 290(5), 1361–1367.

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B., et al. (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function. The Journal of Experimental Medicine, 197(1), 7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal, R., Rangel-Moreno, J., Slight, S., Lin, Y., Nawar, H. F., Fallert Junecko, B. A., et al. (2013). Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunology, 6(5), 972–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews. Immunology, 3(1), 23–35.

    Article  CAS  PubMed  Google Scholar 

  • Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., & Lambrecht, B. N. (2014). The function of Fcgamma receptors in dendritic cells and macrophages. Nature Reviews. Immunology, 14(2), 94–108.

    Article  CAS  PubMed  Google Scholar 

  • Hamasur, B., Haile, M., Pawlowski, A., Schroder, U., Kallenius, G., & Svenson, S. B. (2004). A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab’) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clinical and Experimental Immunology, 138(1), 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, J., De Haro, S. A., Master, S. S., Keane, J., Roberts, E. A., Delgado, M., et al. (2007). T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity, 27(3), 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Heitmann, L., Abad Dar, M., Schreiber, T., Erdmann, H., Behrends, J., McKenzie, A. N., et al. (2014). The IL-13/IL-4Ralpha axis is involved in tuberculosis-associated pathology. The Journal of Pathology, 234(3), 338–350.

    Article  CAS  PubMed  Google Scholar 

  • Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., et al. (2000). A toll-like receptor recognizes bacterial DNA. Nature, 408(6813), 740–745.

    Article  CAS  PubMed  Google Scholar 

  • Hoheisel, G., Izbicki, G., Roth, M., Chan, C. H., Leung, J. C., Reichenberger, F., et al. (1998). Compartmentalization of pro-inflammatory cytokines in tuberculous pleurisy. Respiratory Medicine, 92(1), 14–17.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. M., & Norazmi, M. N. (2013). Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection--the double-edged sword? BioMed Research International, 2013, 179174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh, C. H., Frink, M., Hsieh, Y. C., Kan, W. H., Hsu, J. T., Schwacha, M. G., et al. (2008). The role of MIP-1 alpha in the development of systemic inflammatory response and organ injury following trauma hemorrhage. Journal of Immunology, 181(4), 2806–2812.

    Article  CAS  Google Scholar 

  • Hussain, R., Ansari, A., Talat, N., Hasan, Z., & Dawood, G. (2011). CCL2/MCP-I genotype- phenotype relationship in latent tuberculosis infection. PLoS One, 6(10), e25803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh, K. K., Joshi, S. A., & Brown, E. J. (2011). A delicate dance: Host response to mycobacteria. Current Opinion in Immunology, 23(4), 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, A. J., Mongkolsapaya, J., Screaton, G. R., McShane, H., & Wilkinson, R. J. (2016). Antibodies and tuberculosis. Tuberculosis (Edinburgh, Scotland), 101, 102–113.

    Article  CAS  Google Scholar 

  • Jones, L. L., & Vignali, D. A. (2011). Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunologic Research, 51(1), 5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joosten, S. A., van Meijgaarden, K. E., Del Nonno, F., Baiocchini, A., Petrone, L., Vanini, V., et al. (2016). Patients with tuberculosis have a dysfunctional circulating B-cell compartment, which normalizes following successful treatment. PLoS Pathogens, 12(6), e1005687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan, G., Post, F. A., Moreira, A. L., Wainwright, H., Kreiswirth, B. N., Tanverdi, M., et al. (2003). Mycobacterium tuberculosis growth at the cavity surface: A microenvironment with failed immunity. Infection and Immunity, 71(12), 7099–7108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane, J., Gershon, S., Wise, R. P., Mirabile-Levens, E., Kasznica, J., Schwieterman, W. D., et al. (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha- neutralizing agent. The New England Journal of Medicine, 345(15), 1098–1104.

    Article  CAS  PubMed  Google Scholar 

  • Khader, S. A., Partida-Sanchez, S., Bell, G., Jelley-Gibbs, D. M., Swain, S., Pearl, J. E., et al. (2006). Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. The Journal of Experimental Medicine, 203(7), 1805–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khader, S. A., Bell, G. K., Pearl, J. E., Fountain, J. J., Rangel-Moreno, J., Cilley, G. E., et al. (2007). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 8(4), 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Khader, S. A., Guglani, L., Rangel-Moreno, J., Gopal, R., Junecko, B. A., Fountain, J. J., et al. (2011). IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. Journal of Immunology, 187(10), 5402–5407.

    Article  CAS  Google Scholar 

  • Kim, M. J., Wainwright, H. C., Locketz, M., Bekker, L. G., Walther, G. B., Dittrich, C., et al. (2010). Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, 2(7), 258–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinjo, Y., Kawakami, K., Uezu, K., Yara, S., Miyagi, K., Koguchi, Y., et al. (2002). Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: A comparative study with IL-12p40. Journal of Immunology, 169(1), 323–329.

    Article  CAS  Google Scholar 

  • Kiran, D., Podell, B. K., Chambers, M., & Basaraba, R. J. (2016). Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: A review. Seminars in Immunopathology, 38(2), 167–183.

    Article  CAS  PubMed  Google Scholar 

  • Kohmo, S., Kijima, T., Mori, M., Minami, T., Namba, Y., Yano, Y., et al. (2012). CXCL12 as a biological marker for the diagnosis of tuberculous pleurisy. Tuberculosis (Edinburgh, Scotland), 92(3), 248–252.

    Article  CAS  Google Scholar 

  • Kolloli, A., & Subbian, S. (2017). Host-directed therapeutic strategies for tuberculosis. Frontiers in Medicine (Lausanne), 4, 171.

    Article  Google Scholar 

  • Koo, M. S., Manca, C., Yang, G., O’Brien, P., Sung, N., Tsenova, L., et al. (2011). Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One, 6(2), e17091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozakiewicz, L., Phuah, J., Flynn, J., & Chan, J. (2013). The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Advances in Experimental Medicine and Biology, 783, 225–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramnik, I., & Beamer, G. (2016). Mouse models of human TB pathology: Roles in the analysis of necrosis and the development of host-directed therapies. Seminars in Immunopathology, 38(2), 221–237.

    Article  PubMed  Google Scholar 

  • Krutzik, S. R., Ochoa, M. T., Sieling, P. A., Uematsu, S., Ng, Y. W., Legaspi, A., et al. (2003). Activation and regulation of toll-like receptors 2 and 1 in human leprosy. Nature Medicine, 9(5), 525–532.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, N. P., Gopinath, V., Sridhar, R., Hanna, L. E., Banurekha, V. V., Jawahar, M. S., et al. (2013). IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis. PLoS One, 8(3), e59572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S. K., Singh, P., & Sinha, S. (2015). Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosis in human macrophages by augmenting phagosome maturation. Open Biology, 5(12), 150171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, N. P., Banurekha, V. V., Nair, D., & Babu, S. (2016). Circulating angiogenic factors as biomarkers of disease severity and bacterial burden in pulmonary tuberculosis. PLoS One, 11(1), e0146318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladel, C. H., Blum, C., Dreher, A., Reifenberg, K., & Kaufmann, S. H. (1995). Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis. European Journal of Immunology, 25(10), 2877–2881.

    Article  CAS  PubMed  Google Scholar 

  • Law, K., Weiden, M., Harkin, T., Tchou-Wong, K., Chi, C., & Rom, W. N. (1996). Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. American Journal of Respiratory and Critical Care Medicine, 153(2), 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Lin, P. L., & Flynn, J. L. (2010). Understanding latent tuberculosis: A moving target. Journal of Immunology, 185(1), 15–22.

    Article  CAS  Google Scholar 

  • Lin, P. L., Rodgers, M., Smith, L., Bigbee, M., Myers, A., Bigbee, C., et al. (2009). Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infection and Immunity, 77(10), 4631–4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, P. L., Rutledge, T., Green, A. M., Bigbee, M., Fuhrman, C., Klein, E., et al. (2012). CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Research and Human Retroviruses, 28(12), 1693–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenstrom, T., Woodworth, J., Dietrich, J., Aagaard, C., Andersen, P., & Agger, E. M. (2012). Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infection and Immunity, 80(10), 3533–3544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lingnau, M., Hoflich, C., Volk, H. D., Sabat, R., & Docke, W. D. (2007). Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Human Immunology, 68(9), 730–738.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P. T., Schenk, M., Walker, V. P., Dempsey, P. W., Kanchanapoomi, M., Wheelwright, M., et al. (2009). Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One, 4(6), e5810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lockhart, E., Green, A. M., & Flynn, J. L. (2006). IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. Journal of Immunology, 177(7), 4662–4669.

    Article  CAS  Google Scholar 

  • Lugo-Villarino, G., Hudrisier, D., Benard, A., & Neyrolles, O. (2012). Emerging trends in the formation and function of tuberculosis granulomas. Frontiers in Immunology, 3, 405.

    PubMed  Google Scholar 

  • Maglione, P. J., Xu, J., & Chan, J. (2007). B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. Journal of Immunology, 178(11), 7222–7234.

    Article  CAS  Google Scholar 

  • Maglione, P. J., Xu, J., Casadevall, A., & Chan, J. (2008). Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. Journal of Immunology, 180(5), 3329–3338.

    Article  CAS  Google Scholar 

  • Marino, S., El-Kebir, M., & Kirschner, D. (2011). A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. Journal of Theoretical Biology, 280(1), 50–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Master, S. S., Rampini, S. K., Davis, A. S., Keller, C., Ehlers, S., Springer, B., et al. (2008). Mycobacterium tuberculosis prevents inflammasome activation. Cell Host & Microbe, 3(4), 224–232.

    Article  CAS  Google Scholar 

  • Matthews, K., Wilkinson, K. A., Kalsdorf, B., Roberts, T., Diacon, A., Walzl, G., et al. (2011). Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis (Edinburgh, Scotland), 91(6), 587–593.

    Article  CAS  Google Scholar 

  • Mattila, J. T., Ojo, O. O., Kepka-Lenhart, D., Marino, S., Kim, J. H., Eum, S. Y., et al. (2013). Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. Journal of Immunology, 191(2), 773–784.

    Article  CAS  Google Scholar 

  • Mazzarella, G., Bianco, A., Perna, F., D’Auria, D., Grella, E., Moscariello, E., et al. (2003). T lymphocyte phenotypic profile in lung segments affected by cavitary and non-cavitary tuberculosis. Clinical and Experimental Immunology, 132(2), 283–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAleer, J. P., & Kolls, J. K. (2014). Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunological Reviews, 260(1), 129–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, K. W., de Waal Malefyt, R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765.

    Article  CAS  PubMed  Google Scholar 

  • Moser, B., & Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Nature Immunology, 2(2), 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, B., & Behar, S. M. (2011). Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection. The Journal of Experimental Medicine, 208(11), 2251–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M., & Puzo, G. (2001). Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: Evidence for a negative signal delivered through the mannose receptor. Journal of Immunology, 166(12), 7477–7485.

    Article  CAS  Google Scholar 

  • O’Garra, A., Redford, P. S., McNab, F. W., Bloom, C. I., Wilkinson, R. J., & Berry, M. P. (2013). The immune response in tuberculosis. Annual Review of Immunology, 31, 475–527.

    Article  CAS  PubMed  Google Scholar 

  • O’Kane, C. M., Boyle, J. J., Horncastle, D. E., Elkington, P. T., & Friedland, J. S. (2007). Monocyte-dependent fibroblast CXCL8 secretion occurs in tuberculosis and limits survival of mycobacteria within macrophages. Journal of Immunology, 178(6), 3767–3776.

    Article  Google Scholar 

  • O’Leary, S., O’Sullivan, M. P., & Keane, J. (2011). IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. American Journal of Respiratory Cell and Molecular Biology, 45(1), 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Oehlers, S. H., Cronan, M. R., Scott, N. R., Thomas, M. I., Okuda, K. S., Walton, E. M., et al. (2015). Interception of host angiogenic signalling limits mycobacterial growth. Nature, 517(7536), 612–615.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Yoshida, Y., Umemura, M., Yahagi, A., O’Brien, R. L., Ikuta, K., Kishihara, K., et al. (2010). Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. Journal of Immunology, 184(8), 4414–4422.

    Article  CAS  Google Scholar 

  • Olivares, N., Puig, A., Aguilar, D., Moya, A., Cadiz, A., Otero, O., et al. (2009). Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis. Tuberculosis (Edinburgh, Scotland), 89(3), 218–220.

    Article  CAS  Google Scholar 

  • Ordway, D., Henao-Tamayo, M., Harton, M., Palanisamy, G., Troudt, J., Shanley, C., et al. (2007). The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. Journal of Immunology, 179(1), 522–531.

    Article  CAS  Google Scholar 

  • Osherov, N., & Ben-Ami, R. (2016). Modulation of host angiogenesis as a microbial survival strategy and therapeutic target. PLoS Pathogens, 12(4), e1005479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pahari, S., Kaur, G., Aqdas, M., Negi, S., Chatterjee, D., Bashir, H., et al. (2017). Bolstering immunity through pattern recognition receptors: A unique approach to control tuberculosis. Frontiers in Immunology, 8, 906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palsson-McDermott, E. M., Curtis, A. M., Goel, G., Lauterbach, M. A., Sheedy, F. J., Gleeson, L. E., et al. (2015). Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metabolism, 21(1), 65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, A. K., & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4376–4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, A. K., Yang, Y., Jiang, Z., Fortune, S. M., Coulombe, F., Behr, M. A., et al. (2009). NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathogens, 5(7), e1000500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philips, J. A., & Ernst, J. D. (2012). Tuberculosis pathogenesis and immunity. Annual Review of Pathology, 7, 353–384.

    Article  CAS  PubMed  Google Scholar 

  • Quesniaux, V., Fremond, C., Jacobs, M., Parida, S., Nicolle, D., Yeremeev, V., et al. (2004). Toll- like receptor pathways in the immune responses to mycobacteria. Microbes and Infection, 6(10), 946–959.

    Article  CAS  PubMed  Google Scholar 

  • Rajaram, M. V. S., Arnett, E., Azad, A. K., Guirado, E., Ni, B., Gerberick, A. D., et al. (2017). M. tuberculosis-initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRgamma-chain, Grb2, and SHP-1. Cell Reports, 21(1), 126–140.

    Article  CAS  PubMed  Google Scholar 

  • Reiling, N., Holscher, C., Fehrenbach, A., Kroger, S., Kirschning, C. J., Goyert, S., et al. (2002). Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. Journal of Immunology, 169(7), 3480–3484.

    Article  CAS  Google Scholar 

  • Rodrigo, T., Cayla, J. A., Garcia de Olalla, P., Galdos-Tanguis, H., Jansa, J. M., Miranda, P., et al. (1997). Characteristics of tuberculosis patients who generate secondary cases. The International Journal of Tuberculosis and Lung Disease, 1(4), 352–357.

    CAS  PubMed  Google Scholar 

  • Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S., & Altare, F. (2009a). Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 10(9), 943–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, D. G., Vanderven, B. C., Glennie, S., Mwandumba, H., & Heyderman, R. S. (2009b). The macrophage marches on its phagosome: Dynamic assays of phagosome function. Nature Reviews. Immunology, 9(8), 594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai, H., Okafuji, I., Nishikomori, R., Abe, J., Izawa, K., Kambe, N., et al. (2010). The CD40-CD40L axis and IFN-gamma play critical roles in Langhans giant cell formation. International Immunology, 24(1), 5–15.

    Article  CAS  Google Scholar 

  • Saukkonen, J. J., Bazydlo, B., Thomas, M., Strieter, R. M., Keane, J., & Kornfeld, H. (2002). Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infection and Immunity, 70(4), 1684–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger, L. S., Hull, S. R., & Kaufman, T. M. (1994). Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. Journal of Immunology, 152(8), 4070–4079.

    CAS  Google Scholar 

  • Seiler, P., Aichele, P., Bandermann, S., Hauser, A. E., Lu, B., Gerard, N. P., et al. (2003). Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. European Journal of Immunology, 33(10), 2676–2686.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2010). HIF-1: upstream and downstream of cancer metabolism. Current Opinion in Genetics and Development, 20(1), 51–56.

    Article  CAS  Google Scholar 

  • Shalekoff, S., & Tiemessen, C. T. (2003). Circulating levels of stromal cell-derived factor 1alpha and interleukin 7 in HIV type 1 infection and pulmonary tuberculosis are reciprocally related to CXCR4 expression on peripheral blood leukocytes. AIDS Research and Human Retroviruses, 19(6), 461–468.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Eugenin, E. A., & Subbian, S. (2016). Immunometabolism in tuberculosis. Frontiers in Immunology, 7, 150.

    PubMed  PubMed Central  Google Scholar 

  • Siveke, J. T., & Hamann, A. (1998). T helper 1 and T helper 2 cells respond differentially to chemokines. Journal of Immunology, 160(2), 550–554.

    CAS  Google Scholar 

  • Stegelmann, F., Bastian, M., Swoboda, K., Bhat, R., Kiessler, V., Krensky, A. M., et al. (2005). Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. Journal of Immunology, 175(11), 7474–7483.

    Article  CAS  Google Scholar 

  • Strzelak, A., Komorowska-Piotrowska, A., & Ziolkowski, J. (2012). [CXCL10/IP-10 as a new biomarker for Mycobacterium tuberculosis infection]. Polski Merkuriusz Lekarski, 33(198), 342–345.

    Google Scholar 

  • Subbian, S., Tsenova, L., Yang, G., O’Brien, P., Parsons, S., Peixoto, B., et al. (2011). Chronic pulmonary cavitary tuberculosis in rabbits: A failed host immune response. Open Biology, 1(4), 110016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suwara, M. I., Green, N. J., Borthwick, L. A., Mann, J., Mayer-Barber, K. D., Barron, L., et al. (2014). IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunology, 7(3), 684–693.

    Article  CAS  PubMed  Google Scholar 

  • Tabarsi, P., Marjani, M., Mansouri, N., Farnia, P., Boisson-Dupuis, S., Bustamante, J., et al. (2011). Lethal tuberculosis in a previously healthy adult with IL-12 receptor deficiency. Journal of Clinical Immunology, 31(4), 537–539.

    Article  PubMed  Google Scholar 

  • Tan, S., & Russell, D. G. (2015). Trans-species communication in the Mycobacterium tuberculosis-infected macrophage. Immunological Reviews, 264(1), 233–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toossi, Z., & Ellner, J. J. (1998). The role of TGF beta in the pathogenesis of human tuberculosis. Clinical Immunology and Immunopathology, 87(2), 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Toossi, Z., Gogate, P., Shiratsuchi, H., Young, T., & Ellner, J. J. (1995). Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. Journal of Immunology, 154(1), 465–473.

    CAS  Google Scholar 

  • Tsenova, L., O’Brien, P., Holloway, J., Peixoto, B., Soteropoulos, P., Fallows, D., et al. (2014). Etanercept exacerbates inflammation and pathology in a rabbit model of active pulmonary tuberculosis. Journal of Interferon & Cytokine Research, 34(9), 716–726.

    Article  CAS  Google Scholar 

  • Uehira, K., Amakawa, R., Ito, T., Tajima, K., Naitoh, S., Ozaki, Y., et al. (2002). Dendritic cells are decreased in blood and accumulated in granuloma in tuberculosis. Clinical Immunology, 105(3), 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs, T., Kosmiadi, G. A., Jörg, S., Pradl, L., Titukhina, M., Mishenko, V., et al. (2005). Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. The Journal of Infectious Diseases, 192(1), 89–97.

    Article  PubMed  Google Scholar 

  • Verway, M., Bouttier, M., Wang, T. T., Carrier, M., Calderon, M., An, B. S., et al. (2013). Vitamin D induces interleukin-1beta expression: Paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathogens, 9(6), e1003407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesosky, B., Rottinghaus, E. K., Stromberg, P., Turner, J., & Beamer, G. (2010). CCL5 participates in early protection against Mycobacterium tuberculosis. Journal of Leukocyte Biology, 87(6), 1153–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis, R. S., Kyambadde, P., Johnson, J. L., Horter, L., Kittle, R., Pohle, M., et al. (2004). A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV- 1-associated tuberculosis. AIDS, 18(2), 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, K. J., Risin, S. A., Actor, J. K., & Hunter, R. L. (2011). Immunopathology of postprimary tuberculosis: Increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clinical & Developmental Immunology, 2011, 307631.

    Article  Google Scholar 

  • WHO. (2017). Global tuberculosis report. Geneva: World Health Organization.

    Google Scholar 

  • Wieland, C. W., van der Windt, G. J., Wiersinga, W. J., Florquin, S., & van der Poll, T. (2008). CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis. Immunology, 125(2), 272–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak, T. M., Ryan, A. A., & Britton, W. J. (2006). Interleukin-23 restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. Journal of Immunology, 177(12), 8684–8692.

    Article  CAS  Google Scholar 

  • Zhang, Y., Lathigra, R., Garbe, T., Catty, D., & Young, D. (1991). Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Molecular Microbiology, 5(2), 381–391.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Kaptanoglu, L., Tang, Y., Ivancic, D., Rao, S. M., Luster, A., et al. (2004). IP-10-induced recruitment of CXCR3 host T cells is required for small bowel allograft rejection. Gastroenterology, 126(3), 809–818.

    Article  CAS  PubMed  Google Scholar 

  • Zumla, A., Raviglione, M., Hafner, R., & von Reyn, C. F. (2013). Tuberculosis. The New England Journal of Medicine, 368(8), 745–755.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar Subbian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolloli, A., Singh, P., Subbian, S. (2018). Granulomatous Response to Mycobacterium tuberculosis Infection. In: Venketaraman, V. (eds) Understanding the Host Immune Response Against Mycobacterium tuberculosis Infection. Springer, Cham. https://doi.org/10.1007/978-3-319-97367-8_3

Download citation

Publish with us

Policies and ethics