Skip to main content

Symmetry and Topology in Antiferromagnetic Spintronics

  • Chapter
  • First Online:
Topology in Magnetism

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

Abstract

Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding Néel spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.Z. Hasan, C. Kane, Rev. Mod. Phys. 82(4), 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045, http://link.aps.org/doi/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  2. F.D.M. Haldane, Rev. Mod. Phys. 89(4), 040502 (2017). https://doi.org/10.1103/RevModPhys.89.040502, https://link.aps.org/doi/10.1103/RevModPhys.89.040502

  3. T.H. Hansson, M. Hermanns, S.H. Simon, S.F. Viefers, Rev. Mod. Phys. 89(June), 025005 (2017). https://doi.org/10.1103/RevModPhys.89.025005, arXiv:1601.01697, http://dx.doi.org/10.1103/RevModPhys.89.025005

  4. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nat. Nanotechnol. 11(3), 231 (2016). https://doi.org/10.1038/nnano.2016.18, http://dx.doi.org/10.1038/nnano.2016.18

    Article  ADS  Google Scholar 

  5. C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6(11), 813 (2007). https://doi.org/10.1038/nmat2024, http://www.ncbi.nlm.nih.gov/pubmed/17972936

    Article  ADS  Google Scholar 

  6. A.D. Kent, D.C. Worledge, Nat. Nanotechnol. 10(3), 187 (2015). https://doi.org/10.1038/nnano.2015.24, http://www.nature.com/articles/nnano.2015.24%5Cnpapers3://publication/doi/10.1038/nnano.2015.24

    Article  ADS  Google Scholar 

  7. P. Wadley, B. Howells, J. Elezny, C. Andrews, V. Hills, R.P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S.S. Dhesi, S.Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J.S. Chauhan, M.J. Grzybowski, A.W. Rushforth, K.W. Edmonds, B.L. Gallagher, T. Jungwirth, Science 351(6273), 587 (2016). https://doi.org/10.1126/science.aab1031, arXiv:1503.03765, http://www.sciencemag.org/cgi/doi/10.1126/science.aab1031

    Article  ADS  Google Scholar 

  8. D. Kriegner, K. Výborný, K. Olejník, H. Reichlová, V. Novák, X. Marti, J. Gazquez, V. Saidl, P. Němec, V.V. Volobuev, G. Springholz, V. Holý, T. Jungwirth, Nat. Commun. 7, 11623 (2016). https://doi.org/10.1038/ncomms11623, http://www.nature.com/doifinder/10.1038/ncomms11623

    Article  ADS  Google Scholar 

  9. K. Olejník, V. Schuler, X. Marti, V. Novak, Z. Kaspar, P. Wadley, R.P. Campion, K.W. Edmonds, B.L. Gallagher, J. Garces, M. Baumgartner, P. Gambardella, T. Jungwirth, Nat. Commun. 8, 15434 (2017). https://doi.org/10.1038/ncomms15434

    Article  ADS  Google Scholar 

  10. W.A. Borders, H. Akima, S. Fukami, S. Moriya, S. Kurihara, Y. Horio, S. Sato, H. Ohno, Appl. Phys. Express 10, 013007 (2017)

    Google Scholar 

  11. K. Olejnik, T. Seifert, Z. Kaspar, V. Novak, P. Wadley, R.P. Campion, M. Baumgartner, P. Gambardella, P. Nemec, J. Wunderlich, J. Sinova, M. Muller, T. Kampfrath, T. Jungwirth, Science Advances 4(3), 3566 (2018). arXiv:1711.08444

    Article  ADS  Google Scholar 

  12. W. Thomson, Proc. R. Soc. Lond. 8, 546 (1856). https://doi.org/10.1098/rspl.1856.0144

    Article  ADS  Google Scholar 

  13. J. Daughton, Thin Solid Film. 216, 162 (1992). https://doi.org/10.1016/0040-6090(92)90888-I

    Article  ADS  Google Scholar 

  14. B.G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, T. Jungwirth, Nat. Mater. 10(5), 347 (2011). https://doi.org/10.1038/nmat2983, http://www.ncbi.nlm.nih.gov/pubmed/21399629, http://www.nature.com/doifinder/10.1038/nmat2983

    Article  ADS  Google Scholar 

  15. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, R. Ramesh, Nat. Mater. 13(4), 367 (2014). https://doi.org/10.1038/nmat3861, http://www.ncbi.nlm.nih.gov/pubmed/24464243

    Article  ADS  Google Scholar 

  16. S. Nakatsuji, N. Kiyohara, T. Higo, Nature 527, 212 (2015). https://doi.org/10.1038/nature15723

    Article  ADS  Google Scholar 

  17. E. Hall, Philos. Mag. Ser. 5 12(74), 157 (1881). https://doi.org/10.1080/14786448108627086

    Article  Google Scholar 

  18. D. Ralph, M. Stiles, J. Magn. Magn. Mater. 320(7), 1190 (2008). https://doi.org/10.1016/j.jmmm.2007.12.019, http://linkinghub.elsevier.com/retrieve/pii/S0304885307010116

    Article  ADS  Google Scholar 

  19. P. Tang, Q. Zhou, G. Xu, S.C. Zhang, Nat. Phys. 12, 1100 (2016). https://doi.org/10.1038/NPHYS3839

    Article  ADS  Google Scholar 

  20. L. Šmejkal, J. Železný, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 118(10), 106402 (2017). https://doi.org/10.1103/PhysRevLett.118.106402, http://link.aps.org/doi/10.1103/PhysRevLett.118.106402

  21. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys. 87(4), 1213 (2015). https://doi.org/10.1103/RevModPhys.87.1213, http://link.aps.org/doi/10.1103/RevModPhys.87.1213

    Article  ADS  Google Scholar 

  22. F. Hellman, A. Hoffmann, Y. Tserkovnyak, G.S.D. Beach, E.E. Fullerton, C. Leighton, A.H. MacDonald, D.C. Ralph, D.A. Arena, H.A. Durr, P. Fischer, J. Grollier, J.P. Heremans, T. Jungwirth, A.V. Kimel, B. Koopmans, I.N. Krivorotov, S.J. May, A.K. Petford-Long, J.M. Rondinelli, N. Samarth, I.K. Schuller, A.N. Slavin, M.D. Stiles, O. Tchernyshyov, A. Thiaville, B.L. Zink, Rev. Mod. Phys. 89(2), 025006 (2017). https://doi.org/10.1103/RevModPhys.89.025006, arXiv:1607.00439

  23. A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.A. Kim, N. Samarth, D.C. Ralph, Nature 511(7510), 449 (2014). https://doi.org/10.1038/nature13534, http://www.nature.com/doifinder/10.1038/nature13534

    Article  ADS  Google Scholar 

  24. A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang, Science 325, 294 (2009). https://doi.org/10.1126/science.1174736, http://www.ncbi.nlm.nih.gov/pubmed/19608911

    Article  ADS  Google Scholar 

  25. J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 113(15), 157201 (2014). https://doi.org/10.1103/PhysRevLett.113.157201, http://link.aps.org/doi/10.1103/PhysRevLett.113.157201

  26. R.S.K. Mong, A.M. Essin, J.E. Moore, Phys. Rev. B 81(24), 245209 (2010). https://doi.org/10.1103/PhysRevB.81.245209,http://link.aps.org/doi/10.1103/PhysRevB.81.245209

  27. A.B. Shick, S. Khmelevskyi, O.N. Mryasov, J. Wunderlich, T. Jungwirth, Phys. Rev. B 81(21), 212409 (2010). https://doi.org/10.1103/PhysRevB.81.212409, http://link.aps.org/doi/10.1103/PhysRevB.81.212409

  28. S.Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J. Sinova, A.A. Sapozhnik, H.J. Elmers, M. Kläui, M. Jourdan, Nature Communications 9(348) (2018). arXiv:1706.02482

  29. L.M. Sandratskii, J. Kübler, Phys. Rev. Lett. 76(26), 4963 (1996). https://doi.org/10.1103/PhysRevLett.76.4963, http://link.aps.org/doi/10.1103/PhysRevLett.76.4963, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.4963

    Article  ADS  Google Scholar 

  30. T.F. Duan, W.J. Ren, W.L. Liu, S.J. Li, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 107(8), 82403 (2015). https://doi.org/10.1063/1.4929447

    Article  ADS  Google Scholar 

  31. L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, U. Nowak, Phys. Rev. B-Condens. Matter Mater. Phys. 79(2), 020403(R) (2009). https://doi.org/10.1103/PhysRevB.79.020403

  32. T. David, in Topological Quantum Numbers In Nonrelativistic Physics (World Scientific Publishing Company, 1998). https://books.google.cz/books?id=BgbtCgAAQBAJ

  33. B. Bernevig, T. Hughes, in Topological Insulators and Topological Superconductors (Princeton University Press, 2013). https://books.google.de/books?id=wOn7JHSSxrsC

  34. M. Hermanns, pp. 1–24 (2017). arXiv:1702.01525

  35. O. Vafek, A. Vishwanath, Ann. Rev. Condens. Matter Phys. 5(1), 83 (2014). https://doi.org/10.1146/annurev-conmatphys-031113-133841, arXiv:1306.2272, http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133841

    Article  ADS  Google Scholar 

  36. J. Wang, S.C. Zhang, Nat. Mater. 16(11), 1062 (2017). https://doi.org/10.1038/nmat5012, http://www.nature.com/doifinder/10.1038/nmat5012

    Article  ADS  Google Scholar 

  37. H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T.h. Arima, Y. Tokura, S. Ishiwata, Sci. Adv. 2(1), e1501117 (2016). https://doi.org/10.1126/sciadv.1501117, http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1501117

    Article  ADS  Google Scholar 

  38. N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)

    Google Scholar 

  39. C. Bradley, A. Cracknell, The mathematical theory of symmetry in solids: representation theory for point groups and space groups, in Oxford Classic Texts in the Physical Sciences (OUP Oxford, 2010). https://books.google.cz/books?id=lMdNv_wbu2IC

  40. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83(20), 205101 (2011). https://doi.org/10.1103/PhysRevB.83.205101, http://link.aps.org/doi/10.1103/PhysRevB.83.205101

  41. H. Yang, Y. Sun, Y. Zhang, W.J. Shi, S.S.P. Parkin, B. Yan, New J. Phys. 19(1), 015008 (2017). https://doi.org/10.1088/1367-2630/aa5487, arXiv:1608.03404, http://stacks.iop.org/1367-2630/19/i=1/a=015008?key=crossref.8be483e90a7a8a1a6e931152b5976b48

    Article  ADS  Google Scholar 

  42. A. Kohn, A. Kovács, R. Fan, G.J. McIntyre, R.C.C. Ward, J.P. Goff, Sci. Rep. 3, 2412 (2013). https://doi.org/10.1038/srep02412, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3740276&tool=pmcentrez&rendertype=abstract, http://www.nature.com/articles/srep02412

  43. M. Seemann, D. Ködderitzsch, S. Wimmer, H. Ebert, Phys. Rev. B—Condens. Matter Mater. Phys. 92(15) (2015). https://doi.org/10.1103/PhysRevB.92.155138

  44. W.H. Kleiner, Phys. Rev. 142(2), 318 (1966)

    Article  ADS  Google Scholar 

  45. S. Wimmer, K. Chadova, M. Seemann, D. Ködderitzsch, H. Ebert, Phys. Rev. B 94(5) (2016). https://doi.org/10.1103/PhysRevB.94.054415

  46. J. Zelezny, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Masek, J. Sinova, T. Jungwirth, Phys. Rev. B 95, 014403 (2017). https://doi.org/10.1103/PhysRevB.95.014403

  47. F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 90, 174423 (2014). https://doi.org/10.1103/PhysRevB.90.174423, http://link.aps.org/doi/10.1103/PhysRevB.90.174423

  48. F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 92(6), 064415 (2015). https://doi.org/10.1103/PhysRevB.92.064415, http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064415

  49. C. Ciccarelli, L. Anderson, V. Tshitoyan, A.J. Ferguson, F. Gerhard, C. Gould, L.W. Molenkamp, J. Gayles, J. Železný, L. Šmejkal, Z. Yuan, J. Sinova, F. Freimuth, T. Jungwirth. Nat. Phys. 12(9), 855 (2016). https://doi.org/10.1038/nphys3772, http://www.nature.com/doifinder/10.1038/nphys3772

    Article  ADS  Google Scholar 

  50. W. Feng, G.Y. Guo, J. Zhou, Y. Yao, Q. Niu, Phys. Rev. B 92(14), 144426 (2015). https://doi.org/10.1103/PhysRevB.92.144426, http://link.aps.org/doi/10.1103/PhysRevB.92.144426

  51. M. Ikhlas, T. Tomita, T. Koretsune, M.T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, S. Nakatsuji, Nat. Phys. 13, 1085–1090 (2017). https://doi.org/10.1038/nphys4181, http://www.nature.com/doifinder/10.1038/nphys4181

    Article  ADS  Google Scholar 

  52. G. Li, B. Yan, Z. Wang, K. Held, Phys. Rev. B 95(3), 035102 (2017). https://doi.org/10.1103/PhysRevB.95.035102, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.035102

  53. Z.F. Wang, H. Zhang, D. Liu, C. Liu, C. Tang, C. Song, Y. Zhong, J. Peng, F. Li, C. Nie, L. Wang, X.J. Zhou, X. Ma, Q.K. Xue, F. Liu, Nat. Mater. 15(September), 968 (2016). https://doi.org/10.1038/nmat4686, http://www.nature.com/doifinder/10.1038/nmat4686

    Article  ADS  Google Scholar 

  54. V. Gopalan, D.B. Litvin, Nat. Mater. 10(5), 376 (2011). https://doi.org/10.1038/nmat2987, http://dx.doi.org/10.1038/nmat2987

    Article  ADS  Google Scholar 

  55. P. Strange, Relativistic quantum mechanics: with applications in condensed matter and atomic physics, (Cambridge University Press, 1998). https://books.google.de/books?id=sdVrBM2w0OwC

  56. R. Prasad, Electronic structure of materials, (Taylor & Francis, 2013). https://books.google.de/books?id=8s3VygAACAAJ

  57. B.J. Wieder, Y. Kim, A.M. Rappe, C.L. Kane, Phys. Rev. Lett. 116(18), 186402 (2016). https://doi.org/10.1103/PhysRevLett.116.186402, http://link.aps.org/doi/10.1103/PhysRevLett.116.186402

  58. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353(6299), aaf5037 (2016). https://doi.org/10.1126/science.aaf5037, http://www.sciencemag.org/cgi/doi/10.1126/science.aaf5037

    Article  MathSciNet  Google Scholar 

  59. C. Li, J.S. Lian, Q. Jiang, Phys. Rev. B 83(23), 235125 (2011). https://doi.org/10.1103/PhysRevB.83.235125, http://link.aps.org/doi/10.1103/PhysRevB.83.235125

  60. Z. Li, H. Su, X. Yang, J. Zhang, Phys. Rev. B 91(23), 235128 (2015). https://doi.org/10.1103/PhysRevB.91.235128, http://link.aps.org/doi/10.1103/PhysRevB.91.235128

  61. M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C.A. Belvin, B.A. Bernevig, R.J. Cava, N.P. Ong, Nat. Mater. 15(11), 1161 (2016). https://doi.org/10.1038/nmat4684, arXiv:1602.07219, http://dx.doi.org/10.1038/nmat4684, http://www.nature.com/doifinder/10.1038/nmat4684

    Article  ADS  Google Scholar 

  62. T. Suzuki, R. Chisnell, A. Devarakonda, Y.T. Liu, W. Feng, D. Xiao, J.W. Lynn, J.G. Checkelsky. Nat. Phys. 12(July), 1119 (2016). https://doi.org/10.1038/nphys3831, http://www.nature.com/doifinder/10.1038/nphys3831

    Article  ADS  Google Scholar 

  63. J. Park, G. Lee, F. Wolff-Fabris, Y.Y. Koh, M.J. Eom, Y.K. Kim, M.A. Farhan, Y.J. Jo, C. Kim, J.H. Shim, J.S. Kim, Phys. Rev. Lett. 107(12), 126402 (2011). https://doi.org/10.1103/PhysRevLett.107.126402, http://link.aps.org/doi/10.1103/PhysRevLett.107.126402

  64. K. Wang, D. Graf, H. Lei, S.W. Tozer, C. Petrovic, Phys. Rev. B-Condens. Matter Mater. Phys. 84(22), 220401(R) (2011). https://doi.org/10.1103/PhysRevB.84.220401

  65. Y.F. Guo, A.J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I.I. Mazin, Y.G. Shi, A. T. Boothroyd. Phys. Rev. B 90, 075120 (2014)

    Google Scholar 

  66. Z.G. Chen, L. Wang, Y. Song, X. Lu, H. Luo, C. Zhang, P. Dai, Z. Yin, K. Haule, G. Kotliar, Phys. Rev. Lett. 119(9), 096401 (2017). https://doi.org/10.1103/PhysRevLett.119.096401, arXiv:1709.00203, http://dx.doi.org/10.1103/PhysRevLett.119.096401

  67. F. Máca, J. Mašek, O. Stelmakhovych, X. Martí, H. Reichlová, K. Uhlíová, P. Beran, P. Wadley, V. Novák, T. Jungwirth, J. Magn. Magn. Mater. 324(8), 1606 (2012). https://doi.org/10.1016/j.jmmm.2011.12.017, http://linkinghub.elsevier.com/retrieve/pii/S0304885311008900

    Article  ADS  Google Scholar 

  68. A.B. Sushkov, J.B. Hofmann, G.S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, H.D. Drew, Phys. Rev. B-Condens. Matter Mater. Phys. 92(24), 241108(R) (2015). https://doi.org/10.1103/PhysRevB.92.241108

  69. Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T.H. Hsieh, J.J. Ishikawa, K. Kindo, L. Balents, S. Nakatsuji, Nat. Phys. 12(November), 134 (2015). https://doi.org/10.1038/nphys3567, http://www.nature.com/doifinder/10.1038/nphys3567

    Article  ADS  Google Scholar 

  70. T. Kondo, M. Nakayama, R. Chen, J.J. Ishikawa, E.G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, S. Shin, Nat. Commun. 6, 10042 (2015). https://doi.org/10.1038/ncomms10042. arXiv:1510.07977, http://www.nature.com/doifinder/10.1038/ncomms10042

  71. H. Yang, Y. Sun, Y. Zhang, W.J. Shi, S.S.P. Parkin, B. Yan, New J. Phys. 19(1), 015008 (2017). https://doi.org/10.1088/1367-2630/aa5487, http://stacks.iop.org/1367-2630/19/i=1/a=015008?key=crossref.8be483e90a7a8a1a6e931152b5976b48

    Article  ADS  Google Scholar 

  72. K. Kuroda, T. Tomita, M.T. Suzuki, C. Bareille, A.A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, S. Nakatsuji, Nat. Mater. 16, 1090–1095 (2017). https://doi.org/10.1038/nmat4987, arXiv:1710.06167

    Article  ADS  Google Scholar 

  73. S.Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. Andrew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. Hugo Dil, J. Osterwalder, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, N. Samarth, M. Zahid Hasan, Nat. Phys. 8(8), 616 (2012). https://doi.org/10.1038/nphys2351, http://dx.doi.org/10.1038/nphys2351

    Article  ADS  Google Scholar 

  74. F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, J.S. Moodera, Nature 533(7604), 513 (2016). https://doi.org/10.1038/nature17635, http://www.nature.com/nature/journal/v533/n7604/full/nature17635.html

    Article  ADS  Google Scholar 

  75. Q.L. He, X. Kou, A.J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S.M. Disseler, B.J. Kirby, W. Ratcliff II, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J.A. Borchers, K.L. Wang, Nat. Mater. 16(1), 94 (2016). https://doi.org/10.1038/nmat4783, arXiv:1605.04854, http://www.nature.com/doifinder/10.1038/nmat4783

    Article  ADS  Google Scholar 

  76. J. Finley, L. Liu, Phys. Rev. Appl. 6(5), 054001 (2016). https://doi.org/10.1103/PhysRevApplied.6.054001, https://link.aps.org/doi/10.1103/PhysRevApplied.6.054001

  77. J. Han, A. Richardella, S. Siddiqui, J. Finley, N. Samarth, L. Liu, Phys. Rev. Lett. 119, 077702 (2017). arXiv:1703.07470

  78. S.M. Young, B.J. Wieder, Phys. Rev. Lett. 118, 186401 (2017). arXiv:1609.06738

  79. C. Liu, Y. Lee, T. Kondo, E.D. Mun, M. Caudle, B.N. Harmon, S.L. Bud, P.C. Canfield, A. Kaminski, Phys. Rev. B 83, 205133 (2011). https://doi.org/10.1103/PhysRevB.83.205133

  80. W.F. Tsai, H. Lin, Nat. Mater. 15, 927–928 (2016). https://doi.org/10.1038/nmat4700

    Article  ADS  Google Scholar 

  81. C.W.J. Beenakker, L. Kouwenhoven, Nat. Phys. 12(7), 618 (2016). https://doi.org/10.1038/nphys3778, http://www.nature.com/doifinder/10.1038/nphys3778

    Article  ADS  Google Scholar 

  82. S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M.N. Ali, B. Buechner, M. Hoesch, R.J. Cava, (2015). https://doi.org/10.1017/CBO9781107415324.004

  83. M. Chinotti, A. Pal, W.J. Ren, C. Petrovic, L. Degiorgi, Phys. Rev. B 94(24), 245101 (2016). https://doi.org/10.1103/PhysRevB.94.245101, https://link.aps.org/doi/10.1103/PhysRevB.94.245101

  84. A. Wang, I. Zaliznyak, W. Ren, L. Wu, D. Graf, V.O. Garlea, Phys. Rev. B 94, 165161 (2016). https://doi.org/10.1103/PhysRevB.94.165161

  85. D. Chaudhuri, B. Cheng, A. Yaresko, Q.D. Gibson, R.J. Cava, N.P. Armitage, Phys. Rev. B 96, 075151 (2017). arXiv:1701.08693

  86. J.Y. Liu, J. Hu, Q. Zhang, D. Graf, H.B. Cao, S.M. Radmanesh, D.J. Adams, Y.L. Zhu, G.F. Cheng, X. Liu, W.A. Phelan, J. Wei, M. Jaime, F. Balakirev, D.A. Tennant, J.F. DItusa, I. Chiorescu, L. Spinu, Z.Q. Mao. Nat. Mater. 16(9), 905 (2017). https://doi.org/10.1038/nmat4953

    Article  ADS  Google Scholar 

  87. B.J. Yang, N. Nagaosa, Nat. Commun. 5, 4898 (2014). https://doi.org/10.1038/ncomms5898, http://dx.doi.org/10.1038/ncomms5898

  88. L. Šmejkal, T. Jungwirth, J. Sinova, Phys. Status Solidi-Rapid Res. Lett. 11(4) (2017). https://doi.org/10.1002/pssr.201700044, arXiv:1702.07788, http://dx.doi.org/10.1002/pssr.201700044

    Article  ADS  Google Scholar 

  89. A.A. Burkov, Nat. Mater. 15(11), 1145 (2016). https://doi.org/10.1038/nmat4788, arXiv:1610.07866, http://www.nature.com/doifinder/10.1038/nmat4788%5Cn

    Article  ADS  Google Scholar 

  90. L. Šmejkal, Y. Mokrousov, B. Yan, A.H. MacDonald, Nature Physics 14, 242–251 (2018). arXiv:1706.00670

    Article  ADS  Google Scholar 

  91. M. Kargarian, M. Randeria, Y.M. Lu, Proce. Nat. Acad. Sci. 113(31), 8648 (2016). https://doi.org/10.1073/pnas.1524787113, http://www.pnas.org/cgi/content/short/113/31/8648

    Article  ADS  Google Scholar 

  92. E. Emmanouilidou, H. Cao, P. Tang, X. Gui, C. Hu, B. Shen, J. Wu, S.C. Zhang, W. Xie, N. Ni, Phys. Rev. B 96, 224405 (2017). arXiv:1708.09340

  93. X. Zhang, S. Sun, H. Lei, Phys. Rev. B 96, 235105 (2017). arXiv:1709.03394

  94. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107(18), 186806 (2011). https://doi.org/10.1103/PhysRevLett.107.186806, http://link.aps.org/doi/10.1103/PhysRevLett.107.186806

  95. Z. Wang, M.G. Vergniory, S. Kushwaha, M. Hirschberger, E.V. Chulkov, A. Ernst, N.P. Ong, R.J. Cava, B.A. Bernevig, Phys. Rev. Lett. 117(23), 236401 (2016). https://doi.org/10.1103/PhysRevLett.117.236401, arXiv:1603.00479, http://link.aps.org/doi/10.1103/PhysRevLett.117.236401

  96. S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S.M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349(6248), 613 (2015). https://doi.org/10.1126/science.aaa9297, http://www.sciencemag.org/cgi/doi/10.1126/science.aaa9297

    Article  ADS  Google Scholar 

  97. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5(3), 031013 (2015). https://doi.org/10.1103/PhysRevX.5.031013

  98. L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.K. Mo, C. Felser, B. Yan, Y.L. Chen, Nat. Phys. 11(9), 728 (2015). https://doi.org/10.1038/nphys3425, http://www.nature.com/doifinder/10.1038/nphys3425

    Article  ADS  Google Scholar 

  99. J. Kübler, C. Felser, Europhys. Lett. (EPL) 108(6), 67001 (2014). https://doi.org/10.1209/0295-5075/108/67001, http://stacks.iop.org/0295-5075/108/i=6/a=67001?key=crossref.7fc151e16858620dbeae03d11c5917a6

    Article  ADS  Google Scholar 

  100. Y. Zhang, Y. Sun, H. Yang, J. Železný, S.P.P. Parkin, C. Felser, B. Yan, Phys. Rev. B 95(7), 075128 (2017). https://doi.org/10.1103/PhysRevB.95.075128, arXiv:1610.04034, http://link.aps.org/doi/10.1103/PhysRevB.95.075128

  101. T. Nagamiya, S. Tomiyoshi, Y. Yamaguchi, Solid State Commun. 42(5), 385 (1982). https://doi.org/10.1016/0038-1098(82)90159-4, http://linkinghub.elsevier.com/retrieve/pii/0038109882901594

    Article  ADS  Google Scholar 

  102. S. Tomiyoshi, Y. Yamaguchi, J. Phys. Soci. Jpn. 51(8), 2478 (1982), http://journals.jps.jp/doi/abs/10.1143/JPSJ.51.2478#.WK-Vf2a3ROQ.mendeley

  103. H. Fujita, Phys. Status Solidi-Rapid Res. Lett. 11(4), 1600360 (2017). https://doi.org/10.1002/pssr.201600360

    Article  ADS  Google Scholar 

  104. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527(7579), 495 (2015). https://doi.org/10.1038/nature15768, http://dx.doi.org/10.1038/nature15768, http://www.nature.com/doifinder/10.1038/nature15768

    Article  ADS  Google Scholar 

  105. A.A. Zyuzin, R.P. Tiwari, JETP Lett. 103(11), 717 (2016). https://doi.org/10.1134/S002136401611014X, http://link.springer.com/10.1134/S002136401611014X

    Article  ADS  Google Scholar 

  106. H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130(6), 389 (1983). https://doi.org/10.1016/0370-2693(83)91529-0

    Article  ADS  MathSciNet  Google Scholar 

  107. B. Yan, C. Felser, Ann. Rev. Condens. Matter Phys. 8, 337 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025458. arXiv:1611.04182

    Article  ADS  Google Scholar 

  108. V.A. Zyuzin, Phys. Rev. B 95, 245128 (2017). https://doi.org/10.1103/PhysRevB.95.245128

  109. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514(7521), 205 (2014). https://doi.org/10.1038/nature13763, http://www.ncbi.nlm.nih.gov/pubmed/25219849

    Article  ADS  Google Scholar 

  110. I. Pletikosic, M.N. Ali, A.V. Fedorov, R.J. Cava, T. Valla, Phys. Rev. Lett. 113(21), 216601 (2014). https://doi.org/10.1103/PhysRevLett.113.216601

  111. T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N.E. Hussey, S. Wiedmann, J.C. Maan, Phys. Rev. Lett. 117(25), 256601 (2016). https://doi.org/10.1103/PhysRevLett.117.256601, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.256601

  112. P. Kim, J.H. Ryoo, C.H. Park, Phys. Rev. Lett. 119, 266401 (2017). arXiv:1707.01103

  113. Q.R. Zhang, B. Zeng, D. Rhodes, S. Memaran, T. Besara, R. Sankar, F. Chou, N. Alidoust, S.Y. Xu, I. Belopolski, M.Z. Hasan, L. Balicas, pp. 1–24 (2017), https://arxiv.org/pdf/1705.00920.pdf

  114. Q.L. He, G. Yin, L. Yu, A.J. Grutter, L. Pan, X. Kou, X. Che, G. Yu, T. Nie, B. Zhang, Q. Shao, K. Murata, X. Zhu, Y. Fan, X. Han, B.J. Kirby, K.L. Wang, Arxiv preprint (2016). arXiv:1612.01661

  115. M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K.S. Takahashi, M. Kawasaki, Y. Tokura. Nat. Mater. 16, 516–521 (2017). https://doi.org/10.1038/NMAT4855

    Article  ADS  Google Scholar 

  116. Y. Tokura, M. Kawasaki, N. Nagaosa, Nat. Phys. 13, 1056–1068 (2017). https://doi.org/10.1038/NPHYS4274

    Article  ADS  Google Scholar 

  117. X.Y. Dong, S. Kanungo, B. Yan, C.X. Liu, Phys. Rev. B 94(24), 245135 (2016). https://doi.org/10.1103/PhysRevB.94.245135, http://link.aps.org/doi/10.1103/PhysRevB.94.245135

  118. K. Yamamoto, L. Smejkal, T. Jungwirth, J. Sinova, unpublished

    Google Scholar 

  119. N. Wakeham, E.D. Bauer, M. Neupane, F. Ronning, Phys. Rev. B-Condens. Matter Mater. Phys. 93(20), 205152 (2016). https://doi.org/10.1103/PhysRevB.93.205152

  120. F.D.M. Haldane, Phys. Rev. Lett. 61(18), 2015 (1988). http://link.aps.org/doi/10.1103/PhysRevLett.61.2015

  121. R. Shindou, N. Nagaosa, Phys. Rev. Lett. 87(11), 116801 (2001). http://link.aps.org/doi/10.1103/PhysRevLett.87.116801

  122. H. Chen, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014). https://doi.org/10.1103/PhysRevLett.112.017205, http://link.aps.org/doi/10.1103/PhysRevLett.112.017205

  123. A.K. Nayak, J.E. Fischer, Y. Sun, B. Yan, J. Karel, A.C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, S.S.P. Parkin, Sci. Adv. 2(4), e1501870 (2016). https://doi.org/10.1126/sciadv.1501870, http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1501870

    Article  ADS  Google Scholar 

  124. N. Kiyohara, T. Tomita, S. Nakatsuji, Phys. Rev. Appl. 5, 064009 (2016). https://doi.org/10.1103/PhysRevApplied.5.064009. arXiv:1511.04619, http://dx.doi.org/10.1103/PhysRevApplied.5.064009

  125. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463(7278), 210 (2010). https://doi.org/10.1038/nature08680, http://dx.doi.org/10.1038/nature08680

    Article  ADS  Google Scholar 

  126. J. Kübler, C. Felser, Europhys. Lett. (EPL) 120(4), (2018) . arXiv:1711.03891

  127. F. Haldane, Phys. Rev. Lett. 93(20), 206602 (2004). https://doi.org/10.1103/PhysRevLett.93.206602, http://link.aps.org/doi/10.1103/PhysRevLett.93.206602

  128. D. Gosálbez-Martínez, I. Souza, D. Vanderbilt, Phys. Rev. B 92(8), 085138 (2015). https://doi.org/10.1103/PhysRevB.92.085138, https://link.aps.org/doi/10.1103/PhysRevB.92.085138

  129. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106(15), 156603 (2011). https://doi.org/10.1103/PhysRevLett.106.156603, http://link.aps.org/doi/10.1103/PhysRevLett.106.156603

  130. C. Sürgers, G. Fischer, P. Winkel, H.V. Löhneysen, Nat. Commun. 5, 3400 (2014). https://doi.org/10.1038/ncomms4400, http://www.ncbi.nlm.nih.gov/pubmed/24594621

  131. C. Sürgers, W. Kittler, T. Wolf, H.v. Löhneysen, AIP Adv. 6(5), 055604 (2016). https://doi.org/10.1063/1.4943759, arXiv:1601.01840, http://aip.scitation.org/doi/10.1063/1.4943759

    Article  ADS  Google Scholar 

  132. J. Zhou, Q.F. Liang, H. Weng, Y.B. Chen, S.H. Yao, Y.F. Chen, J. Dong, G.Y. Guo, Phys. Rev. Lett. 116(25), 256601 (2016). https://doi.org/10.1103/PhysRevLett.116.256601

  133. J. Barker, O.A. Tretiakov, Phys. Rev. Lett. 116(14), 147203 (2016). https://doi.org/10.1103/PhysRevLett. 116.147203, http://link.aps.org/doi/10.1103/PhysRevLett.116.147203

  134. P.M. Buhl, F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Status Solidi (RRL)—Rapid Res. Lett. 11(4), 1700007 (2017). https://doi.org/10.1002/pssr.201700007, arXiv:1701.03030, http://doi.wiley.com/10.1002/pssr.201700007

    Article  ADS  Google Scholar 

  135. B. Göbel, A. Mook, J. Henk, I. Mertig, Phys. Rev. B 96(6), 060406 (2017). https://doi.org/10.1103/PhysRevB.96.060406, arXiv:1707.05267, http://stacks.iop.org/1367-2630/19/i=6/a=063042?key=crossref.8e79cf18fd05a715d017f8a5fb97a762, http://link.aps.org/doi/10.1103/PhysRevB.96.060406

  136. A.H. MacDonald, M. Tsoi, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sc. 369(1948), 3098 (2011). https://doi.org/10.1098/rsta.2011.0014, http://www.ncbi.nlm.nih.gov/pubmed/21727116, http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2011.0014

    Article  ADS  Google Scholar 

  137. D. Sander, S.O. Valenzuela, D. Makarov, C.H. Marrows, E.E. Fullerton, P. Fischer, J. Mccord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A.D. Kent, T. Jungwirth, O. Gutfleisch, C.G. Kim, A. Berger, J. Phys. D Appl. Phys. 50, 363001 (2017). http://iopscience.iop.org/0022-3727/50/36/363001

  138. Y. Fan, K.L. Wang, SPIN 06(02), 1640001 (2016). https://doi.org/10.1142/S2010324716400014, http://www.worldscientific.com/doi/abs/10.1142/S2010324716400014

    Article  ADS  Google Scholar 

  139. Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R.N. Schwartz, Y. Tserkovnyak, K.L. Wang, Nat. Mater. 13(7), 699 (2014). https://doi.org/10.1038/nmat3973, http://www.ncbi.nlm.nih.gov/pubmed/24776536

    Article  ADS  Google Scholar 

  140. Y. Fan, K.L. Wang, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L.T. Chang, M. Akyol, G. Yu, T. Nie, K.L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, K.L. Wang, Nat. Nanotechnol. 11, 352 (2016). https://doi.org/10.1038/nnano.2015.294. arXiv:1511.07442, http://www.worldscientific.com/doi/abs/10.1142/S2010324716400014

    Article  ADS  Google Scholar 

  141. J.P. Hanke, F. Freimuth, C. Niu, S. Blügel, Y. Mokrousov, Nature Communications 8, 1479 (2017). http://arxiv.org/1701.08050

  142. A.K. Nayak, J.E. Fischer, Y. Sun, B. Yan, J. Karel, A.C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, S.S.P. Parkin, Sci. Adv. 2(4), e1501870 (2016)

    Google Scholar 

  143. Z.Q. Liu, H. Chen, J.M. Wang, J.H. Liu, K. Wang, Z.X. Feng, H. Yan, X.R. Wang, C.B. Jiang, J.M.D. Coey, A.H. MacDonald, Nature Electronics 1, 172–177 (2018)

    Article  Google Scholar 

  144. M. Meinert, D. Graulich, T. Matalla-Wagner, Phys. Rev. Applied 9, 064040 (2018)

    Google Scholar 

  145. X.F. Zhou, J. Zhang, F. Li, X.Z. Chen, G.Y. Shi, Y.Z. Tan, Y.D. Gu, M.S. Saleem, H.Q. Wu, F. Pan, C. Song Phys. Rev. Applied 9, 054028 (2018)

    Google Scholar 

  146. Di Xiao, Jue Jiang, Jae-Ho Shin, Wenbo Wang, Fei Wang, Yi-Fan Zhao, Chaoxing Liu, Wu Weida, Moses H. W. Chan, Nitin Samarth, Cui-Zu Chang. Phys. Rev. Lett. 120, 056801 (2018)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Ministry of Education of the Czech Republic Grants LM2015087 and LNSM-LNSpin, the Grant Agency of the Czech Republic Grant No. 14–37427, and the EU FET Open RIA Grant No. 766566.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Šmejkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šmejkal, L., Jungwirth, T. (2018). Symmetry and Topology in Antiferromagnetic Spintronics. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_9

Download citation

Publish with us

Policies and ethics