Advertisement

Symmetry and Topology in Antiferromagnetic Spintronics

  • Libor ŠmejkalEmail author
  • Tomáš Jungwirth
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 192)

Abstract

Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding Néel spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.

Notes

Acknowledgements

We acknowledge support from the Ministry of Education of the Czech Republic Grants LM2015087 and LNSM-LNSpin, the Grant Agency of the Czech Republic Grant No. 14–37427, and the EU FET Open RIA Grant No. 766566.

References

  1. 1.
  2. 2.
  3. 3.
    T.H. Hansson, M. Hermanns, S.H. Simon, S.F. Viefers, Rev. Mod. Phys. 89(June), 025005 (2017).  https://doi.org/10.1103/RevModPhys.89.025005, arXiv:1601.01697, http://dx.doi.org/10.1103/RevModPhys.89.025005
  4. 4.
    T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nat. Nanotechnol. 11(3), 231 (2016).  https://doi.org/10.1038/nnano.2016.18, http://dx.doi.org/10.1038/nnano.2016.18ADSCrossRefGoogle Scholar
  5. 5.
    C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6(11), 813 (2007).  https://doi.org/10.1038/nmat2024, http://www.ncbi.nlm.nih.gov/pubmed/17972936ADSCrossRefGoogle Scholar
  6. 6.
  7. 7.
    P. Wadley, B. Howells, J. Elezny, C. Andrews, V. Hills, R.P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S.S. Dhesi, S.Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J.S. Chauhan, M.J. Grzybowski, A.W. Rushforth, K.W. Edmonds, B.L. Gallagher, T. Jungwirth, Science 351(6273), 587 (2016).  https://doi.org/10.1126/science.aab1031, arXiv:1503.03765, http://www.sciencemag.org/cgi/doi/10.1126/science.aab1031ADSCrossRefGoogle Scholar
  8. 8.
    D. Kriegner, K. Výborný, K. Olejník, H. Reichlová, V. Novák, X. Marti, J. Gazquez, V. Saidl, P. Němec, V.V. Volobuev, G. Springholz, V. Holý, T. Jungwirth, Nat. Commun. 7, 11623 (2016).  https://doi.org/10.1038/ncomms11623, http://www.nature.com/doifinder/10.1038/ncomms11623ADSCrossRefGoogle Scholar
  9. 9.
    K. Olejník, V. Schuler, X. Marti, V. Novak, Z. Kaspar, P. Wadley, R.P. Campion, K.W. Edmonds, B.L. Gallagher, J. Garces, M. Baumgartner, P. Gambardella, T. Jungwirth, Nat. Commun. 8, 15434 (2017).  https://doi.org/10.1038/ncomms15434ADSCrossRefGoogle Scholar
  10. 10.
    W.A. Borders, H. Akima, S. Fukami, S. Moriya, S. Kurihara, Y. Horio, S. Sato, H. Ohno, Appl. Phys. Express 10, 013007 (2017)Google Scholar
  11. 11.
    K. Olejnik, T. Seifert, Z. Kaspar, V. Novak, P. Wadley, R.P. Campion, M. Baumgartner, P. Gambardella, P. Nemec, J. Wunderlich, J. Sinova, M. Muller, T. Kampfrath, T. Jungwirth, Science Advances 4(3), 3566 (2018). arXiv:1711.08444ADSCrossRefGoogle Scholar
  12. 12.
    W. Thomson, Proc. R. Soc. Lond. 8, 546 (1856).  https://doi.org/10.1098/rspl.1856.0144ADSCrossRefGoogle Scholar
  13. 13.
    J. Daughton, Thin Solid Film. 216, 162 (1992).  https://doi.org/10.1016/0040-6090(92)90888-IADSCrossRefGoogle Scholar
  14. 14.
    B.G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, T. Jungwirth, Nat. Mater. 10(5), 347 (2011).  https://doi.org/10.1038/nmat2983, http://www.ncbi.nlm.nih.gov/pubmed/21399629, http://www.nature.com/doifinder/10.1038/nmat2983ADSCrossRefGoogle Scholar
  15. 15.
    X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R.J. Paull, J.D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.H. Chu, C.T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, R. Ramesh, Nat. Mater. 13(4), 367 (2014).  https://doi.org/10.1038/nmat3861, http://www.ncbi.nlm.nih.gov/pubmed/24464243ADSCrossRefGoogle Scholar
  16. 16.
    S. Nakatsuji, N. Kiyohara, T. Higo, Nature 527, 212 (2015).  https://doi.org/10.1038/nature15723ADSCrossRefGoogle Scholar
  17. 17.
    E. Hall, Philos. Mag. Ser. 5 12(74), 157 (1881).  https://doi.org/10.1080/14786448108627086CrossRefGoogle Scholar
  18. 18.
  19. 19.
    P. Tang, Q. Zhou, G. Xu, S.C. Zhang, Nat. Phys. 12, 1100 (2016).  https://doi.org/10.1038/NPHYS3839ADSCrossRefGoogle Scholar
  20. 20.
    L. Šmejkal, J. Železný, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 118(10), 106402 (2017).  https://doi.org/10.1103/PhysRevLett.118.106402, http://link.aps.org/doi/10.1103/PhysRevLett.118.106402
  21. 21.
    J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys. 87(4), 1213 (2015).  https://doi.org/10.1103/RevModPhys.87.1213, http://link.aps.org/doi/10.1103/RevModPhys.87.1213ADSCrossRefGoogle Scholar
  22. 22.
    F. Hellman, A. Hoffmann, Y. Tserkovnyak, G.S.D. Beach, E.E. Fullerton, C. Leighton, A.H. MacDonald, D.C. Ralph, D.A. Arena, H.A. Durr, P. Fischer, J. Grollier, J.P. Heremans, T. Jungwirth, A.V. Kimel, B. Koopmans, I.N. Krivorotov, S.J. May, A.K. Petford-Long, J.M. Rondinelli, N. Samarth, I.K. Schuller, A.N. Slavin, M.D. Stiles, O. Tchernyshyov, A. Thiaville, B.L. Zink, Rev. Mod. Phys. 89(2), 025006 (2017).  https://doi.org/10.1103/RevModPhys.89.025006, arXiv:1607.00439
  23. 23.
    A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.A. Kim, N. Samarth, D.C. Ralph, Nature 511(7510), 449 (2014).  https://doi.org/10.1038/nature13534, http://www.nature.com/doifinder/10.1038/nature13534ADSCrossRefGoogle Scholar
  24. 24.
    A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang, Science 325, 294 (2009).  https://doi.org/10.1126/science.1174736, http://www.ncbi.nlm.nih.gov/pubmed/19608911ADSCrossRefGoogle Scholar
  25. 25.
    J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 113(15), 157201 (2014).  https://doi.org/10.1103/PhysRevLett.113.157201, http://link.aps.org/doi/10.1103/PhysRevLett.113.157201
  26. 26.
    R.S.K. Mong, A.M. Essin, J.E. Moore, Phys. Rev. B 81(24), 245209 (2010).  https://doi.org/10.1103/PhysRevB.81.245209,http://link.aps.org/doi/10.1103/PhysRevB.81.245209
  27. 27.
    A.B. Shick, S. Khmelevskyi, O.N. Mryasov, J. Wunderlich, T. Jungwirth, Phys. Rev. B 81(21), 212409 (2010).  https://doi.org/10.1103/PhysRevB.81.212409, http://link.aps.org/doi/10.1103/PhysRevB.81.212409
  28. 28.
    S.Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J. Sinova, A.A. Sapozhnik, H.J. Elmers, M. Kläui, M. Jourdan, Nature Communications 9(348) (2018). arXiv:1706.02482
  29. 29.
  30. 30.
    T.F. Duan, W.J. Ren, W.L. Liu, S.J. Li, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 107(8), 82403 (2015).  https://doi.org/10.1063/1.4929447ADSCrossRefGoogle Scholar
  31. 31.
    L. Szunyogh, B. Lazarovits, L. Udvardi, J. Jackson, U. Nowak, Phys. Rev. B-Condens. Matter Mater. Phys. 79(2), 020403(R) (2009).  https://doi.org/10.1103/PhysRevB.79.020403
  32. 32.
    T. David, in Topological Quantum Numbers In Nonrelativistic Physics (World Scientific Publishing Company, 1998). https://books.google.cz/books?id=BgbtCgAAQBAJ
  33. 33.
    B. Bernevig, T. Hughes, in Topological Insulators and Topological Superconductors (Princeton University Press, 2013). https://books.google.de/books?id=wOn7JHSSxrsC
  34. 34.
    M. Hermanns, pp. 1–24 (2017). arXiv:1702.01525
  35. 35.
  36. 36.
  37. 37.
    H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T.h. Arima, Y. Tokura, S. Ishiwata, Sci. Adv. 2(1), e1501117 (2016).  https://doi.org/10.1126/sciadv.1501117, http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1501117ADSCrossRefGoogle Scholar
  38. 38.
    N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)Google Scholar
  39. 39.
    C. Bradley, A. Cracknell, The mathematical theory of symmetry in solids: representation theory for point groups and space groups, in Oxford Classic Texts in the Physical Sciences (OUP Oxford, 2010). https://books.google.cz/books?id=lMdNv_wbu2IC
  40. 40.
    X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83(20), 205101 (2011).  https://doi.org/10.1103/PhysRevB.83.205101, http://link.aps.org/doi/10.1103/PhysRevB.83.205101
  41. 41.
  42. 42.
  43. 43.
    M. Seemann, D. Ködderitzsch, S. Wimmer, H. Ebert, Phys. Rev. B—Condens. Matter Mater. Phys. 92(15) (2015).  https://doi.org/10.1103/PhysRevB.92.155138
  44. 44.
    W.H. Kleiner, Phys. Rev. 142(2), 318 (1966)ADSCrossRefGoogle Scholar
  45. 45.
    S. Wimmer, K. Chadova, M. Seemann, D. Ködderitzsch, H. Ebert, Phys. Rev. B 94(5) (2016).  https://doi.org/10.1103/PhysRevB.94.054415
  46. 46.
    J. Zelezny, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Masek, J. Sinova, T. Jungwirth, Phys. Rev. B 95, 014403 (2017).  https://doi.org/10.1103/PhysRevB.95.014403
  47. 47.
    F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 90, 174423 (2014).  https://doi.org/10.1103/PhysRevB.90.174423, http://link.aps.org/doi/10.1103/PhysRevB.90.174423
  48. 48.
    F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 92(6), 064415 (2015).  https://doi.org/10.1103/PhysRevB.92.064415, http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064415
  49. 49.
    C. Ciccarelli, L. Anderson, V. Tshitoyan, A.J. Ferguson, F. Gerhard, C. Gould, L.W. Molenkamp, J. Gayles, J. Železný, L. Šmejkal, Z. Yuan, J. Sinova, F. Freimuth, T. Jungwirth. Nat. Phys. 12(9), 855 (2016).  https://doi.org/10.1038/nphys3772, http://www.nature.com/doifinder/10.1038/nphys3772ADSCrossRefGoogle Scholar
  50. 50.
    W. Feng, G.Y. Guo, J. Zhou, Y. Yao, Q. Niu, Phys. Rev. B 92(14), 144426 (2015).  https://doi.org/10.1103/PhysRevB.92.144426, http://link.aps.org/doi/10.1103/PhysRevB.92.144426
  51. 51.
    M. Ikhlas, T. Tomita, T. Koretsune, M.T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, S. Nakatsuji, Nat. Phys. 13, 1085–1090 (2017).  https://doi.org/10.1038/nphys4181, http://www.nature.com/doifinder/10.1038/nphys4181ADSCrossRefGoogle Scholar
  52. 52.
    G. Li, B. Yan, Z. Wang, K. Held, Phys. Rev. B 95(3), 035102 (2017).  https://doi.org/10.1103/PhysRevB.95.035102, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.035102
  53. 53.
    Z.F. Wang, H. Zhang, D. Liu, C. Liu, C. Tang, C. Song, Y. Zhong, J. Peng, F. Li, C. Nie, L. Wang, X.J. Zhou, X. Ma, Q.K. Xue, F. Liu, Nat. Mater. 15(September), 968 (2016).  https://doi.org/10.1038/nmat4686, http://www.nature.com/doifinder/10.1038/nmat4686ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
    P. Strange, Relativistic quantum mechanics: with applications in condensed matter and atomic physics, (Cambridge University Press, 1998). https://books.google.de/books?id=sdVrBM2w0OwC
  56. 56.
    R. Prasad, Electronic structure of materials, (Taylor & Francis, 2013). https://books.google.de/books?id=8s3VygAACAAJ
  57. 57.
    B.J. Wieder, Y. Kim, A.M. Rappe, C.L. Kane, Phys. Rev. Lett. 116(18), 186402 (2016).  https://doi.org/10.1103/PhysRevLett.116.186402, http://link.aps.org/doi/10.1103/PhysRevLett.116.186402
  58. 58.
    B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353(6299), aaf5037 (2016).  https://doi.org/10.1126/science.aaf5037, http://www.sciencemag.org/cgi/doi/10.1126/science.aaf5037MathSciNetCrossRefGoogle Scholar
  59. 59.
    C. Li, J.S. Lian, Q. Jiang, Phys. Rev. B 83(23), 235125 (2011).  https://doi.org/10.1103/PhysRevB.83.235125, http://link.aps.org/doi/10.1103/PhysRevB.83.235125
  60. 60.
    Z. Li, H. Su, X. Yang, J. Zhang, Phys. Rev. B 91(23), 235128 (2015).  https://doi.org/10.1103/PhysRevB.91.235128, http://link.aps.org/doi/10.1103/PhysRevB.91.235128
  61. 61.
    M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C.A. Belvin, B.A. Bernevig, R.J. Cava, N.P. Ong, Nat. Mater. 15(11), 1161 (2016).  https://doi.org/10.1038/nmat4684, arXiv:1602.07219, http://dx.doi.org/10.1038/nmat4684, http://www.nature.com/doifinder/10.1038/nmat4684ADSCrossRefGoogle Scholar
  62. 62.
    T. Suzuki, R. Chisnell, A. Devarakonda, Y.T. Liu, W. Feng, D. Xiao, J.W. Lynn, J.G. Checkelsky. Nat. Phys. 12(July), 1119 (2016).  https://doi.org/10.1038/nphys3831, http://www.nature.com/doifinder/10.1038/nphys3831ADSCrossRefGoogle Scholar
  63. 63.
    J. Park, G. Lee, F. Wolff-Fabris, Y.Y. Koh, M.J. Eom, Y.K. Kim, M.A. Farhan, Y.J. Jo, C. Kim, J.H. Shim, J.S. Kim, Phys. Rev. Lett. 107(12), 126402 (2011).  https://doi.org/10.1103/PhysRevLett.107.126402, http://link.aps.org/doi/10.1103/PhysRevLett.107.126402
  64. 64.
    K. Wang, D. Graf, H. Lei, S.W. Tozer, C. Petrovic, Phys. Rev. B-Condens. Matter Mater. Phys. 84(22), 220401(R) (2011).  https://doi.org/10.1103/PhysRevB.84.220401
  65. 65.
    Y.F. Guo, A.J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I.I. Mazin, Y.G. Shi, A. T. Boothroyd. Phys. Rev. B 90, 075120 (2014)Google Scholar
  66. 66.
    Z.G. Chen, L. Wang, Y. Song, X. Lu, H. Luo, C. Zhang, P. Dai, Z. Yin, K. Haule, G. Kotliar, Phys. Rev. Lett. 119(9), 096401 (2017).  https://doi.org/10.1103/PhysRevLett.119.096401, arXiv:1709.00203, http://dx.doi.org/10.1103/PhysRevLett.119.096401
  67. 67.
    F. Máca, J. Mašek, O. Stelmakhovych, X. Martí, H. Reichlová, K. Uhlíová, P. Beran, P. Wadley, V. Novák, T. Jungwirth, J. Magn. Magn. Mater. 324(8), 1606 (2012).  https://doi.org/10.1016/j.jmmm.2011.12.017, http://linkinghub.elsevier.com/retrieve/pii/S0304885311008900ADSCrossRefGoogle Scholar
  68. 68.
    A.B. Sushkov, J.B. Hofmann, G.S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, H.D. Drew, Phys. Rev. B-Condens. Matter Mater. Phys. 92(24), 241108(R) (2015).  https://doi.org/10.1103/PhysRevB.92.241108
  69. 69.
    Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T.H. Hsieh, J.J. Ishikawa, K. Kindo, L. Balents, S. Nakatsuji, Nat. Phys. 12(November), 134 (2015).  https://doi.org/10.1038/nphys3567, http://www.nature.com/doifinder/10.1038/nphys3567ADSCrossRefGoogle Scholar
  70. 70.
    T. Kondo, M. Nakayama, R. Chen, J.J. Ishikawa, E.G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, S. Shin, Nat. Commun. 6, 10042 (2015).  https://doi.org/10.1038/ncomms10042. arXiv:1510.07977, http://www.nature.com/doifinder/10.1038/ncomms10042
  71. 71.
  72. 72.
    K. Kuroda, T. Tomita, M.T. Suzuki, C. Bareille, A.A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, S. Nakatsuji, Nat. Mater. 16, 1090–1095 (2017).  https://doi.org/10.1038/nmat4987, arXiv:1710.06167ADSCrossRefGoogle Scholar
  73. 73.
    S.Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. Andrew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. Hugo Dil, J. Osterwalder, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, N. Samarth, M. Zahid Hasan, Nat. Phys. 8(8), 616 (2012).  https://doi.org/10.1038/nphys2351, http://dx.doi.org/10.1038/nphys2351ADSCrossRefGoogle Scholar
  74. 74.
    F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, J.S. Moodera, Nature 533(7604), 513 (2016).  https://doi.org/10.1038/nature17635, http://www.nature.com/nature/journal/v533/n7604/full/nature17635.htmlADSCrossRefGoogle Scholar
  75. 75.
    Q.L. He, X. Kou, A.J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S.M. Disseler, B.J. Kirby, W. Ratcliff II, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J.A. Borchers, K.L. Wang, Nat. Mater. 16(1), 94 (2016).  https://doi.org/10.1038/nmat4783, arXiv:1605.04854, http://www.nature.com/doifinder/10.1038/nmat4783ADSCrossRefGoogle Scholar
  76. 76.
  77. 77.
    J. Han, A. Richardella, S. Siddiqui, J. Finley, N. Samarth, L. Liu, Phys. Rev. Lett. 119, 077702 (2017). arXiv:1703.07470
  78. 78.
    S.M. Young, B.J. Wieder, Phys. Rev. Lett. 118, 186401 (2017). arXiv:1609.06738
  79. 79.
    C. Liu, Y. Lee, T. Kondo, E.D. Mun, M. Caudle, B.N. Harmon, S.L. Bud, P.C. Canfield, A. Kaminski, Phys. Rev. B 83, 205133 (2011).  https://doi.org/10.1103/PhysRevB.83.205133
  80. 80.
    W.F. Tsai, H. Lin, Nat. Mater. 15, 927–928 (2016).  https://doi.org/10.1038/nmat4700ADSCrossRefGoogle Scholar
  81. 81.
  82. 82.
    S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M.N. Ali, B. Buechner, M. Hoesch, R.J. Cava, (2015).  https://doi.org/10.1017/CBO9781107415324.004
  83. 83.
    M. Chinotti, A. Pal, W.J. Ren, C. Petrovic, L. Degiorgi, Phys. Rev. B 94(24), 245101 (2016).  https://doi.org/10.1103/PhysRevB.94.245101, https://link.aps.org/doi/10.1103/PhysRevB.94.245101
  84. 84.
    A. Wang, I. Zaliznyak, W. Ren, L. Wu, D. Graf, V.O. Garlea, Phys. Rev. B 94, 165161 (2016).  https://doi.org/10.1103/PhysRevB.94.165161
  85. 85.
    D. Chaudhuri, B. Cheng, A. Yaresko, Q.D. Gibson, R.J. Cava, N.P. Armitage, Phys. Rev. B 96, 075151 (2017). arXiv:1701.08693
  86. 86.
    J.Y. Liu, J. Hu, Q. Zhang, D. Graf, H.B. Cao, S.M. Radmanesh, D.J. Adams, Y.L. Zhu, G.F. Cheng, X. Liu, W.A. Phelan, J. Wei, M. Jaime, F. Balakirev, D.A. Tennant, J.F. DItusa, I. Chiorescu, L. Spinu, Z.Q. Mao. Nat. Mater. 16(9), 905 (2017).  https://doi.org/10.1038/nmat4953ADSCrossRefGoogle Scholar
  87. 87.
    B.J. Yang, N. Nagaosa, Nat. Commun. 5, 4898 (2014).  https://doi.org/10.1038/ncomms5898, http://dx.doi.org/10.1038/ncomms5898
  88. 88.
    L. Šmejkal, T. Jungwirth, J. Sinova, Phys. Status Solidi-Rapid Res. Lett. 11(4) (2017).  https://doi.org/10.1002/pssr.201700044, arXiv:1702.07788, http://dx.doi.org/10.1002/pssr.201700044ADSCrossRefGoogle Scholar
  89. 89.
  90. 90.
    L. Šmejkal, Y. Mokrousov, B. Yan, A.H. MacDonald, Nature Physics 14, 242–251 (2018). arXiv:1706.00670ADSCrossRefGoogle Scholar
  91. 91.
    M. Kargarian, M. Randeria, Y.M. Lu, Proce. Nat. Acad. Sci. 113(31), 8648 (2016).  https://doi.org/10.1073/pnas.1524787113, http://www.pnas.org/cgi/content/short/113/31/8648ADSCrossRefGoogle Scholar
  92. 92.
    E. Emmanouilidou, H. Cao, P. Tang, X. Gui, C. Hu, B. Shen, J. Wu, S.C. Zhang, W. Xie, N. Ni, Phys. Rev. B 96, 224405 (2017). arXiv:1708.09340
  93. 93.
    X. Zhang, S. Sun, H. Lei, Phys. Rev. B 96, 235105 (2017). arXiv:1709.03394
  94. 94.
    G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107(18), 186806 (2011).  https://doi.org/10.1103/PhysRevLett.107.186806, http://link.aps.org/doi/10.1103/PhysRevLett.107.186806
  95. 95.
    Z. Wang, M.G. Vergniory, S. Kushwaha, M. Hirschberger, E.V. Chulkov, A. Ernst, N.P. Ong, R.J. Cava, B.A. Bernevig, Phys. Rev. Lett. 117(23), 236401 (2016).  https://doi.org/10.1103/PhysRevLett.117.236401, arXiv:1603.00479, http://link.aps.org/doi/10.1103/PhysRevLett.117.236401
  96. 96.
    S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S.M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349(6248), 613 (2015).  https://doi.org/10.1126/science.aaa9297, http://www.sciencemag.org/cgi/doi/10.1126/science.aaa9297ADSCrossRefGoogle Scholar
  97. 97.
    B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5(3), 031013 (2015).  https://doi.org/10.1103/PhysRevX.5.031013
  98. 98.
    L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.K. Mo, C. Felser, B. Yan, Y.L. Chen, Nat. Phys. 11(9), 728 (2015).  https://doi.org/10.1038/nphys3425, http://www.nature.com/doifinder/10.1038/nphys3425ADSCrossRefGoogle Scholar
  99. 99.
  100. 100.
    Y. Zhang, Y. Sun, H. Yang, J. Železný, S.P.P. Parkin, C. Felser, B. Yan, Phys. Rev. B 95(7), 075128 (2017).  https://doi.org/10.1103/PhysRevB.95.075128, arXiv:1610.04034, http://link.aps.org/doi/10.1103/PhysRevB.95.075128
  101. 101.
  102. 102.
    S. Tomiyoshi, Y. Yamaguchi, J. Phys. Soci. Jpn. 51(8), 2478 (1982), http://journals.jps.jp/doi/abs/10.1143/JPSJ.51.2478#.WK-Vf2a3ROQ.mendeley
  103. 103.
    H. Fujita, Phys. Status Solidi-Rapid Res. Lett. 11(4), 1600360 (2017).  https://doi.org/10.1002/pssr.201600360ADSCrossRefGoogle Scholar
  104. 104.
    A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527(7579), 495 (2015).  https://doi.org/10.1038/nature15768, http://dx.doi.org/10.1038/nature15768, http://www.nature.com/doifinder/10.1038/nature15768ADSCrossRefGoogle Scholar
  105. 105.
  106. 106.
    H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130(6), 389 (1983).  https://doi.org/10.1016/0370-2693(83)91529-0ADSMathSciNetCrossRefGoogle Scholar
  107. 107.
    B. Yan, C. Felser, Ann. Rev. Condens. Matter Phys. 8, 337 (2017).  https://doi.org/10.1146/annurev-conmatphys-031016-025458. arXiv:1611.04182ADSCrossRefGoogle Scholar
  108. 108.
    V.A. Zyuzin, Phys. Rev. B 95, 245128 (2017).  https://doi.org/10.1103/PhysRevB.95.245128
  109. 109.
    M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514(7521), 205 (2014).  https://doi.org/10.1038/nature13763, http://www.ncbi.nlm.nih.gov/pubmed/25219849ADSCrossRefGoogle Scholar
  110. 110.
    I. Pletikosic, M.N. Ali, A.V. Fedorov, R.J. Cava, T. Valla, Phys. Rev. Lett. 113(21), 216601 (2014).  https://doi.org/10.1103/PhysRevLett.113.216601
  111. 111.
    T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N.E. Hussey, S. Wiedmann, J.C. Maan, Phys. Rev. Lett. 117(25), 256601 (2016).  https://doi.org/10.1103/PhysRevLett.117.256601, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.256601
  112. 112.
    P. Kim, J.H. Ryoo, C.H. Park, Phys. Rev. Lett. 119, 266401 (2017). arXiv:1707.01103
  113. 113.
    Q.R. Zhang, B. Zeng, D. Rhodes, S. Memaran, T. Besara, R. Sankar, F. Chou, N. Alidoust, S.Y. Xu, I. Belopolski, M.Z. Hasan, L. Balicas, pp. 1–24 (2017), https://arxiv.org/pdf/1705.00920.pdf
  114. 114.
    Q.L. He, G. Yin, L. Yu, A.J. Grutter, L. Pan, X. Kou, X. Che, G. Yu, T. Nie, B. Zhang, Q. Shao, K. Murata, X. Zhu, Y. Fan, X. Han, B.J. Kirby, K.L. Wang, Arxiv preprint (2016). arXiv:1612.01661
  115. 115.
    M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K.S. Takahashi, M. Kawasaki, Y. Tokura. Nat. Mater. 16, 516–521 (2017).  https://doi.org/10.1038/NMAT4855ADSCrossRefGoogle Scholar
  116. 116.
    Y. Tokura, M. Kawasaki, N. Nagaosa, Nat. Phys. 13, 1056–1068 (2017).  https://doi.org/10.1038/NPHYS4274ADSCrossRefGoogle Scholar
  117. 117.
    X.Y. Dong, S. Kanungo, B. Yan, C.X. Liu, Phys. Rev. B 94(24), 245135 (2016).  https://doi.org/10.1103/PhysRevB.94.245135, http://link.aps.org/doi/10.1103/PhysRevB.94.245135
  118. 118.
    K. Yamamoto, L. Smejkal, T. Jungwirth, J. Sinova, unpublishedGoogle Scholar
  119. 119.
    N. Wakeham, E.D. Bauer, M. Neupane, F. Ronning, Phys. Rev. B-Condens. Matter Mater. Phys. 93(20), 205152 (2016).  https://doi.org/10.1103/PhysRevB.93.205152
  120. 120.
    F.D.M. Haldane, Phys. Rev. Lett. 61(18), 2015 (1988). http://link.aps.org/doi/10.1103/PhysRevLett.61.2015
  121. 121.
    R. Shindou, N. Nagaosa, Phys. Rev. Lett. 87(11), 116801 (2001). http://link.aps.org/doi/10.1103/PhysRevLett.87.116801
  122. 122.
    H. Chen, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).  https://doi.org/10.1103/PhysRevLett.112.017205, http://link.aps.org/doi/10.1103/PhysRevLett.112.017205
  123. 123.
    A.K. Nayak, J.E. Fischer, Y. Sun, B. Yan, J. Karel, A.C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, S.S.P. Parkin, Sci. Adv. 2(4), e1501870 (2016).  https://doi.org/10.1126/sciadv.1501870, http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1501870ADSCrossRefGoogle Scholar
  124. 124.
    N. Kiyohara, T. Tomita, S. Nakatsuji, Phys. Rev. Appl. 5, 064009 (2016).  https://doi.org/10.1103/PhysRevApplied.5.064009. arXiv:1511.04619, http://dx.doi.org/10.1103/PhysRevApplied.5.064009
  125. 125.
    Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463(7278), 210 (2010).  https://doi.org/10.1038/nature08680, http://dx.doi.org/10.1038/nature08680ADSCrossRefGoogle Scholar
  126. 126.
    J. Kübler, C. Felser, Europhys. Lett. (EPL) 120(4), (2018) . arXiv:1711.03891
  127. 127.
  128. 128.
    D. Gosálbez-Martínez, I. Souza, D. Vanderbilt, Phys. Rev. B 92(8), 085138 (2015). https://doi.org/10.1103/PhysRevB.92.085138, https://link.aps.org/doi/10.1103/PhysRevB.92.085138
  129. 129.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106(15), 156603 (2011).  https://doi.org/10.1103/PhysRevLett.106.156603, http://link.aps.org/doi/10.1103/PhysRevLett.106.156603
  130. 130.
    C. Sürgers, G. Fischer, P. Winkel, H.V. Löhneysen, Nat. Commun. 5, 3400 (2014).  https://doi.org/10.1038/ncomms4400, http://www.ncbi.nlm.nih.gov/pubmed/24594621
  131. 131.
    C. Sürgers, W. Kittler, T. Wolf, H.v. Löhneysen, AIP Adv. 6(5), 055604 (2016).  https://doi.org/10.1063/1.4943759, arXiv:1601.01840, http://aip.scitation.org/doi/10.1063/1.4943759ADSCrossRefGoogle Scholar
  132. 132.
    J. Zhou, Q.F. Liang, H. Weng, Y.B. Chen, S.H. Yao, Y.F. Chen, J. Dong, G.Y. Guo, Phys. Rev. Lett. 116(25), 256601 (2016).  https://doi.org/10.1103/PhysRevLett.116.256601
  133. 133.
    J. Barker, O.A. Tretiakov, Phys. Rev. Lett. 116(14), 147203 (2016). https://doi.org/10.1103/PhysRevLett. 116.147203, http://link.aps.org/doi/10.1103/PhysRevLett.116.147203
  134. 134.
    P.M. Buhl, F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Status Solidi (RRL)—Rapid Res. Lett. 11(4), 1700007 (2017).  https://doi.org/10.1002/pssr.201700007, arXiv:1701.03030, http://doi.wiley.com/10.1002/pssr.201700007ADSCrossRefGoogle Scholar
  135. 135.
  136. 136.
  137. 137.
    D. Sander, S.O. Valenzuela, D. Makarov, C.H. Marrows, E.E. Fullerton, P. Fischer, J. Mccord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A.D. Kent, T. Jungwirth, O. Gutfleisch, C.G. Kim, A. Berger, J. Phys. D Appl. Phys. 50, 363001 (2017). http://iopscience.iop.org/0022-3727/50/36/363001
  138. 138.
  139. 139.
    Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.T. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R.N. Schwartz, Y. Tserkovnyak, K.L. Wang, Nat. Mater. 13(7), 699 (2014).  https://doi.org/10.1038/nmat3973, http://www.ncbi.nlm.nih.gov/pubmed/24776536ADSCrossRefGoogle Scholar
  140. 140.
    Y. Fan, K.L. Wang, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L.T. Chang, M. Akyol, G. Yu, T. Nie, K.L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, K.L. Wang, Nat. Nanotechnol. 11, 352 (2016).  https://doi.org/10.1038/nnano.2015.294. arXiv:1511.07442, http://www.worldscientific.com/doi/abs/10.1142/S2010324716400014ADSCrossRefGoogle Scholar
  141. 141.
    J.P. Hanke, F. Freimuth, C. Niu, S. Blügel, Y. Mokrousov, Nature Communications 8, 1479 (2017). http://arxiv.org/1701.08050
  142. 142.
    A.K. Nayak, J.E. Fischer, Y. Sun, B. Yan, J. Karel, A.C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, S.S.P. Parkin, Sci. Adv. 2(4), e1501870 (2016)Google Scholar
  143. 143.
    Z.Q. Liu, H. Chen, J.M. Wang, J.H. Liu, K. Wang, Z.X. Feng, H. Yan, X.R. Wang, C.B. Jiang, J.M.D. Coey, A.H. MacDonald, Nature Electronics 1, 172–177 (2018)CrossRefGoogle Scholar
  144. 144.
    M. Meinert, D. Graulich, T. Matalla-Wagner, Phys. Rev. Applied 9, 064040 (2018)Google Scholar
  145. 145.
    X.F. Zhou, J. Zhang, F. Li, X.Z. Chen, G.Y. Shi, Y.Z. Tan, Y.D. Gu, M.S. Saleem, H.Q. Wu, F. Pan, C. Song Phys. Rev. Applied 9, 054028 (2018)Google Scholar
  146. 146.
    Di Xiao, Jue Jiang, Jae-Ho Shin, Wenbo Wang, Fei Wang, Yi-Fan Zhao, Chaoxing Liu, Wu Weida, Moses H. W. Chan, Nitin Samarth, Cui-Zu Chang. Phys. Rev. Lett. 120, 056801 (2018)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physik, Johannes Gutenberg-UniversitätMainzGermany
  2. 2.Institute of Physics, Academy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Faculty of Mathematics and Physics, Department of Condensed Matter PhysicsCharles UniversityPragueCzech Republic
  4. 4.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations