Advertisement

Spin Hall Effect

  • Matthias AlthammerEmail author
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 192)

Abstract

The spin Hall effect is of current interest from a fundamental and a device application point of view. Most importantly, the spin Hall effect allows to transfer an electrical charge current into a pure spin current, i.e. a current carrying only (spin) angular momentum without an accompanying charge current. This property enables us to gain access to novel spin current related effects by using electrical generation and/or detection schemes. Within this chapter, we will give an overview of the multitude of phenomena associated with it, focussing on means to quantify the spin Hall effect.

Notes

Acknowledgements

I would like to thank S. T. B. Goennenwein for all his help and support while writing this chapter. Moreover, helpful discussions with H. Huebl, R. Gross, and M. Weiler are gratefully acknowledged.

References

  1. 1.
    M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Huebl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.M. Schmalhorst, G. Reiss, L. Shen, A. Gupta, Y.T. Chen, G.E.W. Bauer, E. Saitoh, S.T.B. Goennenwein, Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87(22), 224401 (2013).  https://doi.org/10.1103/physrevb.87.224401ADSCrossRefGoogle Scholar
  2. 2.
    K. Ando, E. Saitoh, Inverse spin-Hall effect in palladium at room temperature. J. Appl. Phys. 108(11), 113925 (2010).  https://doi.org/10.1063/1.3517131ADSCrossRefGoogle Scholar
  3. 3.
    K. Ando, E. Saitoh, Observation of the inverse spin Hall effect in silicon. Nat. Commun. 3, 629 (2012).  https://doi.org/10.1038/ncomms1640ADSCrossRefGoogle Scholar
  4. 4.
    K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh, Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101(3), 036601 (2008).  https://doi.org/10.1103/physrevlett.101.036601ADSCrossRefGoogle Scholar
  5. 5.
    K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, E. Saitoh, Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109(10), 103913 (2011).  https://doi.org/10.1063/1.3587173ADSCrossRefGoogle Scholar
  6. 6.
    A. Aqeel, N. Vlietstra, J.A. Heuver, G.E.W. Bauer, B. Noheda, B.J. van Wees, T.T.M. Palstra, Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2o4 films. Phys. Rev. B 92, 224410 (2015).  https://doi.org/10.1103/physrevb.92.224410ADSCrossRefGoogle Scholar
  7. 7.
    C.O. Avci, K. Garello, A. Ghosh, M. Gabureac, S.F. Alvarado, P. Gambardella, Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11(7), 570–575 (2015).  https://doi.org/10.1038/nphys3356CrossRefGoogle Scholar
  8. 8.
    A.A. Awad, P. Dürrenfeld, A. Houshang, M. Dvornik, E. Iacocca, R.K. Dumas, J. Åkerman, Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292-299 (2017).  https://doi.org/10.1038/nphys3927ADSCrossRefGoogle Scholar
  9. 9.
    G.E.W. Bauer, E. Saitoh, B.J. van Wees, Spin caloritronics. Nat. Mater. 11(5), 391 (2012).  https://doi.org/10.1038/nmat3301ADSCrossRefGoogle Scholar
  10. 10.
    M. Baumgartner, K. Garello, J. Mendil, C.O. Avci, E. Grimaldi, C. Murer, J. Feng, M. Gabureac, C. Stamm, Y. Acremann, S. Finizio, S. Wintz, J. Raabe, P. Gambardella, Spatially and time-resolved magnetization dynamics driven by spinorbit torques. Nat. Nanotechnol. 12(10), 980–986 (2017).  https://doi.org/10.1038/nnano.2017.151ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Bender, Y. Tserkovnyak, Interfacial spin and heat transfer between metals and magnetic insulators. Phys. Rev. B 91, 140402 (2015).  https://doi.org/10.1103/physrevb.91.140402ADSCrossRefGoogle Scholar
  12. 12.
    L. Berger, Generation of dc voltages by a magnetic multilayer undergoing ferromagnetic resonance. Phys. Rev. B 59(17), 11465 (1999).  https://doi.org/10.1103/PhysRevB.59.11465ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Bernevig, T.L. Hughes, S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006).  https://doi.org/10.1126/science.1133734ADSCrossRefGoogle Scholar
  14. 14.
    C. Burrowes, B. Heinrich, B. Kardasz, E.A. Montoya, E. Girt, Y. Sun, Y.Y. Song, M. Wu, Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett. 100(9), 092403 (2012).  https://doi.org/10.1063/1.3690918ADSCrossRefGoogle Scholar
  15. 15.
    F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C.M. Günther, J. Geilhufe, C.V. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Kläui, S. Eisebitt, Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11(3), 225–228 (2015).  https://doi.org/10.1038/nphys3234ADSCrossRefGoogle Scholar
  16. 16.
    J.N. Chazalviel, Spin-dependent Hall effect in semiconductors. Phys. Rev. B 11(10), 3918–3934 (1975).  https://doi.org/10.1103/physrevb.11.3918ADSCrossRefGoogle Scholar
  17. 17.
    J. Chciski, M. Frankowski, T. Stobiecki, Antiferromagnetic nano-oscillator in external magnetic fields. Phys. Rev. B 96(17) (2017).  https://doi.org/10.1103/PhysRevB.96.174438
  18. 18.
    W. Chen, M. Sigrist, D. Manske, Spin Hall effect induced spin transfer through an insulator. Phys. Rev. B 94(10), 104412 (2016).  https://doi.org/10.1103/physrevb.94.104412ADSCrossRefGoogle Scholar
  19. 19.
    Y.T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).  https://doi.org/10.1103/PhysRevB.87.144411ADSCrossRefGoogle Scholar
  20. 20.
    Y.T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance (SMR) and related phenomena. J. Phys. Condens. Matter 28(10), 103004 (2016).  https://doi.org/10.1088/0953-8984/28/10/103004ADSCrossRefGoogle Scholar
  21. 21.
    R. Cheng, D. Xiao, A. Brataas, Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116(20), 207603 (2016).  https://doi.org/10.1103/physrevlett.116.207603ADSCrossRefGoogle Scholar
  22. 22.
    A. Chernyshov, M. Overby, X. Liu, J.K. Furdyna, Y. Lyanda-Geller, L.P. Rokhinson, Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5(9), 656–659 (2009).  https://doi.org/10.1038/nphys1362CrossRefGoogle Scholar
  23. 23.
    S. Cho, S.C. Baek, K.D. Lee, Y. Jo, B.G. Park, Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in w/CoFeB/MgO structures. Sci. Rep. 5, 14668 (2015).  https://doi.org/10.1038/srep14668ADSCrossRefGoogle Scholar
  24. 24.
    M. Collet, X. de Milly, O. d’Allivy Kelly, V.V. Naletov, R. Bernard, P. Bortolotti, J.B. Youssef, V.E. Demidov, S.O. Demokritov, J.L. Prieto, M. Muñoz, V. Cros, A. Anane, G. de Loubens, O. Klein, Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).  https://doi.org/10.1038/ncomms10377ADSCrossRefGoogle Scholar
  25. 25.
    L.J. Cornelissen, J. Liu, R.A. Duine, J.B. Youssef, B.J. van Wees, Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11(12), 1022–1026 (2015).  https://doi.org/10.1038/nphys3465CrossRefGoogle Scholar
  26. 26.
    L.J. Cornelissen, J. Shan, B.J. van Wees, Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet. Phys. Rev. B 94, 180402 (2016).  https://doi.org/10.1103/physrevb.94.180402ADSCrossRefGoogle Scholar
  27. 27.
    F.D. Czeschka, Spin currents in metallic nanostructures. Ph.D. thesis, Technische Universität München (2011)Google Scholar
  28. 28.
    F.D. Czeschka, L. Dreher, M.S. Brandt, M. Weiler, M. Althammer, I.M. Imort, G. Reiss, A. Thomas, W. Schoch, W. Limmer, H. Huebl, R. Gross, S.T.B. Goennenwein, Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett. 107, 046601 (2011).  https://doi.org/10.1103/PhysRevLett.107.046601ADSCrossRefGoogle Scholar
  29. 29.
    M.W. Daniels, W. Guo, G.M. Stocks, D. Xiao, J. Xiao, Spin-transfer torque induced spin waves in antiferromagnetic insulators. New J. Phys. 17(10), 103039 (2015).  https://doi.org/10.1088/1367-2630/17/10/103039ADSCrossRefGoogle Scholar
  30. 30.
    A. Dankert, J. Geurs, M.V. Kamalakar, S. Charpentier, S.P. Dash, Room temperature electrical detection of spin polarized currents in topological insulators. Nano Lett. 15(12), 7976–7981 (2015).  https://doi.org/10.1021/acs.nanolett.5b03080ADSCrossRefGoogle Scholar
  31. 31.
    V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov, Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028-1031 (2012).  https://doi.org/10.1038/nmat3459ADSCrossRefGoogle Scholar
  32. 32.
    V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, S.O. Demokritov, Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105(17), 172410 (2014).  https://doi.org/10.1063/1.4901027ADSCrossRefGoogle Scholar
  33. 33.
    Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V.E. Demidov, S.O. Demokritov, I.N. Krivorotov, Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).  https://doi.org/10.1038/ncomms6616ADSCrossRefGoogle Scholar
  34. 34.
    M. Dyakonov, V. Perel, Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35(6), 459–460 (1971).  https://doi.org/10.1016/0375-9601(71)90196-4ADSCrossRefGoogle Scholar
  35. 35.
    S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S.D. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013).  https://doi.org/10.1038/nmat3675ADSCrossRefGoogle Scholar
  36. 36.
    M. Erekhinsky, A. Sharoni, F. Casanova, I.K. Schuller, Surface enhanced spin-flip scattering in lateral spin valves. Appl. Phys. Lett. 96(2), 022513 (2010).  https://doi.org/10.1063/1.3291047ADSCrossRefGoogle Scholar
  37. 37.
    D. Fang, H. Kurebayashi, J. Wunderlich, K. Vyborny, L.P. Zarbo, R.P. Campion, A. Casiraghi, B.L. Gallagher, T. Jungwirth, A.J. Ferguson, Spin-orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413 (2011).  https://doi.org/10.1038/nnano.2011.68ADSCrossRefGoogle Scholar
  38. 38.
    K. Ganzhorn, J. Barker, R. Schlitz, B.A. Piot, K. Ollefs, F. Guillou, F. Wilhelm, A. Rogalev, M. Opel, M. Althammer, S. Geprägs, H. Huebl, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, Spin Hall magnetoresistance in a canted ferrimagnet. Phys. Rev. B 94, 094401 (2016).  https://doi.org/10.1103/physrevb.94.094401ADSCrossRefGoogle Scholar
  39. 39.
    K. Garello, I.M. Miron, C.O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8(8), 587–593 (2013).  https://doi.org/10.1038/nnano.2013.145ADSCrossRefGoogle Scholar
  40. 40.
    A. Giordano, M. Carpentieri, A. Laudani, G. Gubbiotti, B. Azzerboni, G. Finocchio, Spin-Hall nano-oscillator: a micromagnetic study. Appl. Phys. Lett. 105(4), 042412 (2014).  https://doi.org/10.1063/1.4892168ADSCrossRefGoogle Scholar
  41. 41.
    S.T.B. Goennenwein, R. Schlitz, M. Pernpeintner, K. Ganzhorn, M. Althammer, R. Gross, H. Huebl, Non-local magnetoresistance in YIG/Pt nanostructures. Appl. Phys. Lett. 107(17), 172405 (2015).  https://doi.org/10.1063/1.4935074ADSCrossRefGoogle Scholar
  42. 42.
    Y. Gui, N. Mecking, X. Zhou, G. Williams, C.M. Hu, Realization of a room-temperature spin dynamo: the spin rectification effect. Phys. Rev. Lett. 98(10), 107602 (2007).  https://doi.org/10.1103/PhysRevLett.98.107602ADSCrossRefGoogle Scholar
  43. 43.
    C. Hahn, G. de Loubens, O. Klein, M. Viret, V.V. Naletov, J.B. Youssef, Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B 87(17), 174417 (2013).  https://doi.org/10.1103/physrevb.87.174417ADSCrossRefGoogle Scholar
  44. 44.
    C. Hahn, G. de Loubens, M. Viret, O. Klein, V.V. Naletov, J.B. Youssef, Detection of microwave spin pumping using the inverse spin Hall effect. Phys. Rev. Lett. 111(21), 217204 (2013).  https://doi.org/10.1103/physrevlett.111.217204ADSCrossRefGoogle Scholar
  45. 45.
    E.H. Hall, Anomalous Hall effect. Philos. Mag. 12 (1881)Google Scholar
  46. 46.
    A. Hamadeh, O. d’Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A. Molpeceres, V. Naletov, M. Viret, A. Anane, V. Cros, S. Demokritov, J. Prieto, M. Muñoz, G. de Loubens, O. Klein, Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113(19), 197203 (2014).  https://doi.org/10.1103/physrevlett.113.197203ADSCrossRefGoogle Scholar
  47. 47.
    J.H. Han, C. Song, F. Li, Y.Y. Wang, G.Y. Wang, Q.H. Yang, F. Pan, Antiferromagnet-controlled spin current transport in SrMnO\(_3\)/Pt hybrids. Phys. Rev. B 90, 144431 (2014).  https://doi.org/10.1103/physrevb.90.144431ADSCrossRefGoogle Scholar
  48. 48.
    P.M. Haney, H.W. Lee, K.J. Lee, A. Manchon, M.D. Stiles, Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87(17), 174411 (2013).  https://doi.org/10.1103/physrevb.87.174411ADSCrossRefGoogle Scholar
  49. 49.
    B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.Y. Song, Y. Sun, M. Wu, Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Phys. Rev. Lett. 107(6), 066604 (2011).  https://doi.org/10.1103/PhysRevLett.107.066604ADSCrossRefGoogle Scholar
  50. 50.
    J.E. Hirsch, Spin Hall effect. Phys. Rev. Lett. 83(9), 1834–1837 (1999).  https://doi.org/10.1103/PhysRevLett.83.1834ADSCrossRefGoogle Scholar
  51. 51.
    A. Hoffmann, Spin Hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013).  https://doi.org/10.1109/tmag.2013.2262947ADSCrossRefGoogle Scholar
  52. 52.
    M. Isasa, A. Bedoya-Pinto, S. Vélez, F. Golmar, F. Sánchez, L.E. Hueso, J. Fontcuberta, F. Casanova, Spin Hall magnetoresistance at Pt/CoFe\(_2\)O\(_4\) interfaces and texture effects. Appl. Phys. Lett. 105(14), 142402 (2014).  https://doi.org/10.1063/1.4897544ADSCrossRefGoogle Scholar
  53. 53.
    F.J. Jedema, A.T. Filip, B.J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410(6826), 345–348 (2001).  https://doi.org/10.1038/35066533ADSCrossRefGoogle Scholar
  54. 54.
    Y. Ji, A. Hoffmann, J.S. Jiang, S.D. Bader, Spin injection, diffusion, and detection in lateral spin-valves. Appl. Phys. Lett. 85(25), 6218–6220 (2004).  https://doi.org/10.1063/1.1841455ADSCrossRefGoogle Scholar
  55. 55.
    W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic skyrmion bubbles. Science 349(6245), 283–286 (2015).  https://doi.org/10.1126/science.aaa1442ADSCrossRefGoogle Scholar
  56. 56.
    H. Jiao, G.E.W. Bauer, Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect. Phys. Rev. Lett. 110(21), 217602 (2013).  https://doi.org/10.1103/PhysRevLett.110.217602ADSCrossRefGoogle Scholar
  57. 57.
    M. Johnson, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55(17), 1790–1793 (1985).  https://doi.org/10.1103/physrevlett.55.1790ADSCrossRefGoogle Scholar
  58. 58.
    H.J. Juretschke, Electromagnetic theory of dc effects in ferromagnetic resonance. J. Appl. Phys. 31(8), 1401 (1960).  https://doi.org/10.1063/1.1735851ADSCrossRefGoogle Scholar
  59. 59.
    Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464(7286), 262 (2010).  https://doi.org/10.1038/nature08876ADSCrossRefGoogle Scholar
  60. 60.
    Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. Science 306(5703), 1910–1913 (2004).  https://doi.org/10.1126/science.1105514ADSCrossRefGoogle Scholar
  61. 61.
    A.V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K.A. Zvezdin, A. Anane, J. Grollier, A. Fert, Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87(2) (2013).  https://doi.org/10.1103/PhysRevB.87.020402
  62. 62.
    R. Khymyn, I. Lisenkov, V. Tiberkevich, B.A. Ivanov, A. Slavin, Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017).  https://doi.org/10.1038/srep43705ADSCrossRefGoogle Scholar
  63. 63.
    T. Kimura, Y. Otani, Large spin accumulation in a permalloy-silver lateral spin valve. Phys. Rev. Lett. 99(19), 196604 (2007).  https://doi.org/10.1103/physrevlett.99.196604ADSCrossRefGoogle Scholar
  64. 64.
    T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98(15), 156601 (2007).  https://doi.org/10.1103/physrevlett.98.156601ADSCrossRefGoogle Scholar
  65. 65.
    S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)ADSCrossRefGoogle Scholar
  66. 66.
    J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake, J. Shi, Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers. Nat. Commun. 7, 10858 (2016).  https://doi.org/10.1038/ncomms10858ADSCrossRefGoogle Scholar
  67. 67.
    L. Liu, C.T. Chen, J.Z. Sun, Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10(8), 561–566 (2014).  https://doi.org/10.1038/nphys3004CrossRefGoogle Scholar
  68. 68.
    L. Liu, T. Moriyama, D. Ralph, R. Buhrman, Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106(3), 036601 (2011).  https://doi.org/10.1103/PhysRevLett.106.036601ADSCrossRefGoogle Scholar
  69. 69.
    L. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336(6081), 555–558 (2012).  https://doi.org/10.1126/science.1218197ADSCrossRefGoogle Scholar
  70. 70.
    A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14(9), 871–882 (2015).  https://doi.org/10.1038/nmat4360ADSCrossRefGoogle Scholar
  71. 71.
    A. Manchon, S. Zhang, Theory of spin torque due to spin-orbit coupling. Phys. Rev. B 79(9), 094422 (2009).  https://doi.org/10.1103/physrevb.79.094422ADSCrossRefGoogle Scholar
  72. 72.
    A. Matos-Abiague, J. Fabian, Tunneling anomalous and spin Hall effects. Phys. Rev. Lett. 115(5), 056602 (2015).  https://doi.org/10.1103/physrevlett.115.056602ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    S. Meyer, M. Althammer, S. Geprägs, M. Opel, R. Gross, S.T.B. Goennenwein, Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements. Appl. Phys. Lett. 104(24), 242411 (2014).  https://doi.org/10.1063/1.4885086ADSCrossRefGoogle Scholar
  74. 74.
    I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).  https://doi.org/10.1038/nmat2613ADSCrossRefGoogle Scholar
  75. 75.
    G. Mihajlović, J.E. Pearson, M.A. Garcia, S.D. Bader, A. Hoffmann, Negative nonlocal resistance in mesoscopic gold Hall bars: absence of the giant spin Hall effect. Phys. Rev. Lett. 103(16), 166601 (2009).  https://doi.org/10.1103/physrevlett.103.166601ADSCrossRefGoogle Scholar
  76. 76.
    I.M. Miron, K. Garello, G. Gaudin, P.J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476(7359), 189–193 (2011).  https://doi.org/10.1038/nature10309ADSCrossRefGoogle Scholar
  77. 77.
    I.M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).  https://doi.org/10.1038/nmat2613ADSCrossRefGoogle Scholar
  78. 78.
    I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011).  https://doi.org/10.1038/nmat3020ADSCrossRefGoogle Scholar
  79. 79.
    M. Morota, Y. Niimi, K. Ohnishi, D.H. Wei, T. Tanaka, H. Kontani, T. Kimura, Y. Otani, Indication of intrinsic spin Hall effect in \(4d\) and \(5d\) transition metals. Phys. Rev. B 83, 174405 (2011).  https://doi.org/10.1103/PhysRevB.83.174405ADSCrossRefGoogle Scholar
  80. 80.
    A. Morrish, The Physical Principles of Magnetism (IEEE Press, New York, 2001)CrossRefGoogle Scholar
  81. 81.
    O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104(4), 046601 (2010).  https://doi.org/10.1103/PhysRevLett.104.046601ADSCrossRefGoogle Scholar
  82. 82.
    O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).  https://doi.org/10.1103/PhysRevB.82.214403ADSCrossRefGoogle Scholar
  83. 83.
    N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Modern Phys. 82(2), 1539–1592 (2010).  https://doi.org/10.1103/revmodphys.82.1539ADSCrossRefGoogle Scholar
  84. 84.
    H. Nakayama, M. Althammer, Y.T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, E. Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).  https://doi.org/10.1103/physrevlett.110.206601ADSCrossRefGoogle Scholar
  85. 85.
    Y. Niimi, Y. Kawanishi, D.H. Wei, C. Deranlot, H.X. Yang, M. Chshiev, T. Valet, A. Fert, Y. Otani, Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).  https://doi.org/10.1103/PhysRevLett.109.156602ADSCrossRefGoogle Scholar
  86. 86.
    K. Olejník, V. Novák, J. Wunderlich, T. Jungwirth, Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91(18), 180402 (2015).  https://doi.org/10.1103/physrevb.91.180402ADSCrossRefGoogle Scholar
  87. 87.
    Y. Omori, F. Auvray, T. Wakamura, Y. Niimi, A. Fert, Y. Otani, Inverse spin Hall effect in a closed loop circuit. Appl. Phys. Lett. 104(24), 242415 (2014).  https://doi.org/10.1063/1.4884520ADSCrossRefGoogle Scholar
  88. 88.
    Y. Ou, S. Shi, D.C. Ralph, R.A. Buhrman, Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93(22) (2016).  https://doi.org/10.1103/PhysRevB.93.220405
  89. 89.
    C.F. Pai, L. Liu, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012).  https://doi.org/10.1063/1.4753947ADSCrossRefGoogle Scholar
  90. 90.
    C.F. Pai, Y. Ou, L.H. Vilela-Leão, D.C. Ralph, R.A. Buhrman, Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92(6), 064426 (2015).  https://doi.org/10.1103/physrevb.92.064426ADSCrossRefGoogle Scholar
  91. 91.
    S. Parkin, S.H. Yang, Memory on the racetrack. Nat. Nanotechnol. 10(3), 195–198 (2015).  https://doi.org/10.1038/nnano.2015.41ADSCrossRefGoogle Scholar
  92. 92.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008).  https://doi.org/10.1126/science.1145799ADSCrossRefGoogle Scholar
  93. 93.
    V. Puliafito, A. Giordano, A. Laudani, F. Garescì, M. Carpentieri, B. Azzerboni, G. Finocchio, Scalable synchronization of spin-Hall oscillators in out-of-plane field. Appl. Phys. Lett. 109(20), 202402 (2016).  https://doi.org/10.1063/1.4967842ADSCrossRefGoogle Scholar
  94. 94.
    Z. Qiu, T. An, K. Uchida, D. Hou, Y. Shiomi, Y. Fujikawa, E. Saitoh, Experimental investigation of spin Hall effect in indium tin oxide thin film. Appl. Phys. Lett. 103(18), 182404 (2013).  https://doi.org/10.1063/1.4827808ADSCrossRefGoogle Scholar
  95. 95.
    Z. Qiu, D. Hou, T. Kikkawa, K.I. Uchida, E. Saitoh, All-oxide spin Seebeck effects. Appl. Phys. Express 8(8), 083001 (2015).  https://doi.org/10.7567/APEX.8.083001ADSCrossRefGoogle Scholar
  96. 96.
    D.C. Ralph, M.D. Stiles, Spin transfer torques. JMMM 320(7), 1190–1216 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013).  https://doi.org/10.1038/nnano.2013.102ADSCrossRefGoogle Scholar
  98. 98.
    K.S. Ryu, S.H. Yang, S. Parkin, Experimentally tunable chiral spin transfer torque in domain wall motion. New J. Phys. 18(5), 053027 (2016).  https://doi.org/10.1088/1367-2630/18/5/053027ADSCrossRefGoogle Scholar
  99. 99.
    E. Saitoh, M. Ueda, H. Miyajima, G. Tatara, Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88(18), 182509 (2006).  https://doi.org/10.1063/1.2199473ADSCrossRefGoogle Scholar
  100. 100.
    J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8(11), 839–844 (2013).  https://doi.org/10.1038/nnano.2013.210ADSCrossRefGoogle Scholar
  101. 101.
    C. Sandweg, Y. Kajiwara, A. Chumak, A. Serga, V. Vasyuchka, M. Jungfleisch, E. Saitoh, B. Hillebrands, Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106(21), 216601 (2011).  https://doi.org/10.1103/PhysRevLett.106.216601ADSCrossRefGoogle Scholar
  102. 102.
    M. Schreier, T. Chiba, A. Niedermayr, J. Lotze, H. Huebl, S. Geprägs, S. Takahashi, G.E.W. Bauer, R. Gross, S.T.B. Goennenwein, Current-induced spin torque resonance of a magnetic insulator. Phys. Rev. B 92(14), 144411 (2015).  https://doi.org/10.1103/physrevb.92.144411ADSCrossRefGoogle Scholar
  103. 103.
    T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P.M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L.M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath, Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10(7), 483–488 (2016).  https://doi.org/10.1038/nphoton.2016.91ADSCrossRefGoogle Scholar
  104. 104.
    T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, K. Takanashi, Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nat. Mater. 7(2), 125–129 (2008).  https://doi.org/10.1038/nmat2098ADSCrossRefGoogle Scholar
  105. 105.
    J. Sinova, S.O. Valenzuela, J. Wunderlich, C. Back, T. Jungwirth, Spin Hall effects. Rev. Modern Phys. 87(4), 1213–1260 (2015).  https://doi.org/10.1103/revmodphys.87.1213ADSCrossRefGoogle Scholar
  106. 106.
    T.D. Skinner, K. Olejnk, L.K. Cunningham, H. Kurebayashi, R.P. Campion, B.L. Gallagher, T. Jungwirth, A.J. Ferguson, Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat. Commun. 6, 6730 (2015).  https://doi.org/10.1038/ncomms7730
  107. 107.
    Y. Sun, H. Chang, M. Kabatek, Y.Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Montoya, B. Kardasz, B. Heinrich, S.G.E. te Velthuis, H. Schultheiss, A. Hoffmann, Damping in yttrium iron garnet nanoscale films capped by platinum. Phys. Rev. Lett. 111(10), 106601 (2013).  https://doi.org/10.1103/PhysRevLett.111.106601ADSCrossRefGoogle Scholar
  108. 108.
    S. Takahashi, S. Maekawa, Spin current in metals and superconductors. J. Phys. Soc. Jpn. 77(3), 031009 (2008).  https://doi.org/10.1143/jpsj.77.031009ADSCrossRefGoogle Scholar
  109. 109.
    A. Thiaville, S. Rohart, M. Ju, V. Cros, A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL (Europhys. Lett.) 100(5), 57002 (2012).  https://doi.org/10.1209/0295-5075/100/57002ADSCrossRefGoogle Scholar
  110. 110.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88(11), 117601 (2002).  https://doi.org/10.1103/PhysRevLett.88.117601ADSCrossRefGoogle Scholar
  111. 111.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002).  https://doi.org/10.1103/PhysRevB.66.224403ADSCrossRefGoogle Scholar
  112. 112.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Modern Phys. 77(4), 1375–1421 (2005).  https://doi.org/10.1103/RevModPhys.77.1375ADSCrossRefGoogle Scholar
  113. 113.
    K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect. Nature 455(7214), 778–781 (2008).  https://doi.org/10.1038/nature07321ADSCrossRefGoogle Scholar
  114. 114.
    K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh, Spin Seebeck insulator. Nat. Mater. 9(11), 894–897 (2010).  https://doi.org/10.1038/nmat2856ADSCrossRefGoogle Scholar
  115. 115.
    H. Ulrichs, V.E. Demidov, S.O. Demokritov, W.L. Lim, J. Melander, N. Ebrahim-Zadeh, S. Urazhdin, Optimization of Pt-based spin-Hall-effect spintronic devices. Appl. Phys. Lett. 102(13), 132402 (2013).  https://doi.org/10.1063/1.4799492ADSCrossRefGoogle Scholar
  116. 116.
    S.O. Valenzuela, M. Tinkham, Direct electronic measurement of the spin Hall effect. Nature 442(7099), 176–179 (2006)ADSCrossRefGoogle Scholar
  117. 117.
    N. Vlietstra, J. Shan, V. Castel, B.J. van Wees, J.B. Youssef, Spin-Hall magnetoresistance in platinum on yttrium iron garnet: dependence on platinum thickness and in-plane/out-of-plane magnetization. Phys. Rev. B 87(18), 184421 (2013).  https://doi.org/10.1103/physrevb.87.184421ADSCrossRefGoogle Scholar
  118. 118.
    S.V. Vonsovskii, Ferromagnetic Resonance (Pergamon Press, New York, 1960)Google Scholar
  119. 119.
    D. Wei, M. Obstbaum, M. Ribow, C.H. Back, G. Woltersdorf, Spin Hall voltages from a.c. and d.c. spin currents. Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms4768
  120. 120.
    M. Weiler, J.M. Shaw, H.T. Nembach, T.J. Silva, Phase-sensitive detection of spin pumping via the ac inverse spin Hall effect. Phys. Rev. Lett. 113(15), 157204 (2014).  https://doi.org/10.1103/physrevlett.113.157204ADSCrossRefGoogle Scholar
  121. 121.
    M. Weiler, G. Woltersdorf, M. Althammer, H. Huebl, S.T.B. Goennenwein, Spin pumping and spin currents in magnetic insulators. Recent advances in magnetic insulators—from spintronics to microwave applications, in Solid State Physics, vol. 64, chap. 5, ed. by M. Wu, A. Hoffmann (Academic Press, 2013), pp. 123–156Google Scholar
  122. 122.
    G. Woltersdorf, O. Mosendz, B. Heinrich, C.H. Back, Magnetization dynamics due to pure spin currents in magnetic double layers. Phys. Rev. Lett. 99(24), 246603 (2007).  https://doi.org/10.1103/PhysRevLett.99.246603ADSCrossRefGoogle Scholar
  123. 123.
    S. Woo, K. Litzius, B. Krüger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.A. Mawass, P. Fischer, M. Kläui, G.S.D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016).  https://doi.org/10.1038/nmat4593ADSCrossRefGoogle Scholar
  124. 124.
    H. Wu, C.H. Wan, X. Zhang, Z.H. Yuan, Q.T. Zhang, J.Y. Qin, H.X. Wei, X.F. Han, S. Zhang, Observation of magnon-mediated electric current drag at room temperature. Phys. Rev. B 93(6) (2016).  https://doi.org/10.1103/physrevb.93.060403
  125. 125.
    H. Wu, Q. Zhang, C. Wan, S.S. Ali, Z. Yuan, L. You, J. Wang, Y. Choi, X. Han, Spin Hall magnetoresistance in CoFe\(_2\)O\(_4\)/Pt films. IEEE Trans. Magn. 51(11), 1–4 (2015).  https://doi.org/10.1109/tmag.2015.2433060CrossRefGoogle Scholar
  126. 126.
    J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94(4), 047204 (2005).  https://doi.org/10.1103/physrevlett.94.047204ADSCrossRefGoogle Scholar
  127. 127.
    J. Wunderlich, B.G. Park, A.C. Irvine, L.P. Zarbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, T. Jungwirth, Spin Hall effect transistor. Science 330(6012), 1801–1804 (2010).  https://doi.org/10.1126/science.1195816ADSCrossRefGoogle Scholar
  128. 128.
    S.H. Yang, K.S. Ryu, S. Parkin, Domain-wall velocities of up to 750 m s1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10(3), 221–226 (2015).  https://doi.org/10.1038/nnano.2014.324ADSCrossRefGoogle Scholar
  129. 129.
    S.S.L. Zhang, G. Vignale, Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers. Phys. Rev. B 94(14), 140411 (2016).  https://doi.org/10.1103/physrevb.94.140411ADSCrossRefGoogle Scholar
  130. 130.
    S.S.L. Zhang, S. Zhang, Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012).  https://doi.org/10.1103/physrevlett.109.096603ADSCrossRefGoogle Scholar
  131. 131.
    S.S.L. Zhang, S. Zhang, Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012).  https://doi.org/10.1103/physrevb.86.214424ADSCrossRefGoogle Scholar
  132. 132.
    W. Zhang, W. Han, S.H. Yang, Y. Sun, Y. Zhang, B. Yan, S.S.P. Parkin, Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2(9), e1600759–e1600759 (2016).  https://doi.org/10.1126/sciadv.1600759ADSCrossRefGoogle Scholar
  133. 133.
    W. Zhang, M.B. Jungfleisch, F. Freimuth, W. Jiang, J. Sklenar, J.E. Pearson, J.B. Ketterson, Y. Mokrousov, A. Hoffmann, All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92(14) (2015).  https://doi.org/10.1103/PhysRevB.92.144405
  134. 134.
    W. Zhang, M.B. Jungfleisch, W. Jiang, J.E. Pearson, A. Hoffmann, F. Freimuth, Y. Mokrousov, Spin hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113(19) (2014).  https://doi.org/10.1103/PhysRevLett.113.196602

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Walther-Meißner-InstitutBayerische Akademie der WissenschaftenGarchingGermany

Personalised recommendations