Advertisement

Skyrmion Lattices Far from Equilibrium

  • Andreas Bauer
  • Alfonso Chacon
  • Marco Halder
  • Christian PfleidererEmail author
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 192)

Abstract

Magnetic skyrmions are spin whirls with non-trivial topology that are remarkably robust. We review current research on skyrmion lattices far from equilibrium in cubic chiral magnets obtained under field cooling, providing access to generic properties of skyrmions in the non-thermal limit as well as concepts of spintronics applications.

References

  1. 1.
    T.H.R. Skyrme, A non-linear field theory. Proc. R. Soc. Lond. A 260, 127 (1961).  https://doi.org/10.1098/rspa.1961.0018ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    T.H.R. Skyrme, A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962).  https://doi.org/10.1016/0029-5582(62)90775-7ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G.S. Adkins, C.R. Nappi, E. Witten, Static properties of nucleons in the Skyrme model. Nucl. Phys. B 228, 552 (1983).  https://doi.org/10.1016/0550-3213(83)90559-XADSCrossRefGoogle Scholar
  4. 4.
    S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419 (1993).  https://doi.org/10.1103/PhysRevB.47.16419ADSCrossRefGoogle Scholar
  5. 5.
    T.-L. Ho, Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742 (1998).  https://doi.org/10.1103/PhysRevLett.81.742ADSCrossRefGoogle Scholar
  6. 6.
    U.A. Khawaja, H. Stoof, Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918 (2001).  https://doi.org/10.1038/35082010ADSCrossRefGoogle Scholar
  7. 7.
    J. Fukuda, S. Žumer, Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).  https://doi.org/10.1038/ncomms1250
  8. 8.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A.  Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet. Science 323, 915 (2009).  https://doi.org/10.1126/science.1166767ADSCrossRefGoogle Scholar
  9. 9.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010).  https://doi.org/10.1038/nature09124ADSCrossRefGoogle Scholar
  10. 10.
    S. Heinze, K.V. Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).  https://doi.org/10.1038/nphys2045ADSCrossRefGoogle Scholar
  11. 11.
    M. Finazzi, M. Savoini, A.R. Khorsand, A. Tsukamoto, A. Itoh, L. Duò, A. Kirilyuk, T. Rasing, M. Ezawa, Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013).  https://doi.org/10.1103/PhysRevLett.110.177205
  12. 12.
    N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K.V. Bergmann, A. Kubetzka, R. Wiesendanger, Writing and deleting single magnetic skyrmions. Science 341, 636 (2013).  https://doi.org/10.1126/science.1240573ADSCrossRefGoogle Scholar
  13. 13.
    J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nano. 8, 839 (2013).  https://doi.org/10.1038/nnano.2013.210ADSCrossRefGoogle Scholar
  14. 14.
    F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C.M. Günther, J. Geilhufe, C.V. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Kläui, S. Eisebitt, Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225 (2015).  https://doi.org/10.1038/nphys3234ADSCrossRefGoogle Scholar
  15. 15.
    W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic skyrmion bubbles. Science 349, 283 (2015).  https://doi.org/10.1126/science.aaa1442ADSCrossRefGoogle Scholar
  16. 16.
    I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L.M. Eng, J.S. White, H.M. Rønnow, C.D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, A. Loidl, Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV\(_{4}\)S\(_{8}\). Nat. Mater. 14, 1116 (2015).  https://doi.org/10.1038/nmat4402ADSCrossRefGoogle Scholar
  17. 17.
    Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Åkerman, Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015).  https://doi.org/10.1038/ncomms9193
  18. 18.
    O. Boulle, J. Vogel, H. Yang, S.  Pizzini, D.  de Souza Chaves, A.  Locatelli, T.O. Menteş, L.D. B.-P. A. Sala, O. Klein, M. Belmeguenai, Y. Roussign, A. Stashkevich, S.M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, G. Gaudin, Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nano. 11, 449 (2016).  https://doi.org/10.1038/nnano.2015.315ADSCrossRefGoogle Scholar
  19. 19.
    C. Moreau-Luchaire, C. Moutas, N. Reyren, J. Sampaio, C.A.F. Vaz, N.V. Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nano. 11, 444 (2016).  https://doi.org/10.1038/nnano.2015.313ADSCrossRefGoogle Scholar
  20. 20.
    P. Milde, D. Köhler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch, Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076 (2013).  https://doi.org/10.1126/science.1234657ADSCrossRefGoogle Scholar
  21. 21.
    J. Li, A. Tan, K.W. Moon, A. Doran, M.A. Marcus, A.T. Young, E. Arenholz, S. Ma, R.F. Yang, C. Hwang, Z.Q. Qiu, Tailoring the topology of an artificial magnetic skyrmion. Nat. Commun. 5, 4704 (2014).  https://doi.org/10.1038/ncomms5704
  22. 22.
    J. Wild, T.N.G. Meier, S. Pöllath, M. Kronseder, A. Bauer, A. Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Müller, A. Rosch, C. Pfleiderer, C. H. Back, Entropy-limited topological protection of skyrmions. Sci. Adv. 3, e1701704 (2017).  https://doi.org/10.1126/sciadv.1701704ADSCrossRefGoogle Scholar
  23. 23.
    A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nano. 8, 152 (2013).  https://doi.org/10.1038/nnano.2013.29ADSCrossRefGoogle Scholar
  24. 24.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries. Nat. Nano. 8, 742 (2013).  https://doi.org/10.1038/nnano.2013.176ADSCrossRefGoogle Scholar
  25. 25.
    N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nano. 8, 899 (2013).  https://doi.org/10.1038/nnano.2013.243ADSCrossRefGoogle Scholar
  26. 26.
    Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, Y. Tokura, Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).  https://doi.org/10.1038/ncomms3391
  27. 27.
    L. Sun, R.X. Cao, B.F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, H.F. Ding, Creating an artificial two-dimensional skyrmion crystal by nanopatterning. Phys. Rev. Lett. 110, 167201 (2013).  https://doi.org/10.1103/PhysRevLett.110.167201
  28. 28.
    X. Yu, J.P. DeGrave, Y. Hara, T. Hara, S. Jin, Y. Tokura, Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett. 13, 3755 (2013).  https://doi.org/10.1021/nl401687dADSCrossRefGoogle Scholar
  29. 29.
    J. Hagemeister, N. Romming, K. von Bergmann, E.Y. Vedmedenko, R. Wiesendanger, Tailoring the topology of an artificial magnetic skyrmion. Nat. Commun. 6, 8455 (2015).  https://doi.org/10.1038/ncomms9455
  30. 30.
    S.-Z. Lin, C.D. Batista, C. Reichhardt, A. Saxena, AC current generation in chiral magnetic insulators and skyrmion motion induced by the spin seebeck effect. Phys. Rev. Lett. 112, 187203 (2014).  https://doi.org/10.1103/PhysRevLett.112.187203
  31. 31.
    X Zhang, G.P. Zhao, H. Fangohr, J.P. Liu, W.X. Xia, J. Xia, F.J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).  https://doi.org/10.1038/srep07643
  32. 32.
    P.-J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, R. Wiesendanger, Electric-field-driven switching of individual magnetic skyrmions. Nat. Nano. 12, 123 (2016).  https://doi.org/10.1038/nnano.2016.234ADSCrossRefGoogle Scholar
  33. 33.
    W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162 (2016).  https://doi.org/10.1038/nphys3883ADSCrossRefGoogle Scholar
  34. 34.
    R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).  https://doi.org/10.1038/natrevmats.2016.44
  35. 35.
    S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, and G.S.D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501 (2016).  https://doi.org/10.1038/nmat4593ADSCrossRefGoogle Scholar
  36. 36.
    J. Müller, Magnetic skyrmions on a two-lane racetrack. New J. Phys. 19, 025002 (2017).  https://doi.org/10.1088/1367-2630/aa5b55ADSCrossRefGoogle Scholar
  37. 37.
    P. Huang, M. Cantoni, A. Kruchkov, R. Jayaraman, A. Magrez, F. Carbone, H.M. Rønnow, In situ electric field skyrmion creation in magnetoelectric Cu\(_2\)OSeO\(_3\) (2017). arXiv:1710.09200
  38. 38.
    T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst, A. Rosch, Long-range crystalline nature of the skyrmion lattice in MnSi. Phys. Rev. Lett. 107, 217206 (2011).  https://doi.org/10.1103/PhysRevLett.107.217206
  39. 39.
    S.L. Zhang, A. Bauer, D.M. Burn, P. Milde, E. Neuber, L.M. Eng, H. Berger, C. Pfleiderer, G. van der Laan, T. Hesjedal, Multidomain skyrmion lattice state in Cu\(_2\)OSeO\(_3\). Nano Lett. 16, 3285 (2016).  https://doi.org/10.1021/acs.nanolett.6b00845ADSCrossRefGoogle Scholar
  40. 40.
    P. Milde, E. Neuber, A. Bauer, C. Pfleiderer, H. Berger, L.M. Eng, Heuristic description of magnetoelectricity of Cu\(_2\)OSeO\(_3\). Nano Lett. 16, 5612 (2016).  https://doi.org/10.1021/acs.nanolett.6b02167ADSCrossRefGoogle Scholar
  41. 41.
    A. Bauer, C. Pfleiderer, Generic aspects of skyrmion lattices in chiral magnets, in Topological Structures in Ferroic Materials: Domain Walls, Vortices and Skyrmions (Springer International Publishing, 2016) p. 1. https://doi.org/10.1007/978-3-319-25301-5_1Google Scholar
  42. 42.
    A.N. Bogdanov, D.A. Yablonskii, Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 95, 178 (1989), http://jetp.ac.ru/cgi-bin/dn/e_068_01_0101.pdf
  43. 43.
    A. Bogdanov, A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater. 138, 255 (1994).  https://doi.org/10.1016/0304-8853(94)90046-9ADSCrossRefGoogle Scholar
  44. 44.
    A. Chacon, A. Bauer, T. Adams, F. Rucker, G. Brandl, R. Georgii, M. Garst, C. Pfleiderer, Uniaxial pressure dependence of magnetic order in MnSi. Phys. Rev. Lett. 115, 267202 (2015).  https://doi.org/10.1103/PhysRevLett.115.267202
  45. 45.
    Y. Nii, T. Nakajima, A. Kikkawa, Y. Yamasaki, K. Ohishi, J. Suzuki, Y. Taguchi, T. Arima, Y. Tokura, Y. Iwasa, Uniaxial stress control of skyrmion phase. Nat. Commun. 6, 8539 (2015).  https://doi.org/10.1038/ncomms9539
  46. 46.
    W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, C. Pfleiderer, Skyrmion lattice in the doped semiconductor Fe\(_{1-x}\)Co\(_x\)Si. Phys. Rev. B 81, 041203 (R) (2010).  https://doi.org/10.1103/PhysRevB.81.041203
  47. 47.
    C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz, F. Birkelbach, P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Mühlbauer, W. Münzer, A. Neubauer, B. Pedersen, A. Rosch, Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J. Phys.: Condens. Matter 22, 164207 (2010).  https://doi.org/10.1088/0953-8984/22/16/164207ADSGoogle Scholar
  48. 48.
    T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Long-wavelength helimagnetic order and skyrmion lattice phase in Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 108, 237204 (2012).  https://doi.org/10.1103/PhysRevLett.108.237204
  49. 49.
    S. Seki, J.-H. Kim, D.S. Inosov, R. Georgii, B. Keimer, S. Ishiwata, Y. Tokura, Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. B 85, 220406 (R) (2012).  https://doi.org/10.1103/PhysRevB.85.220406
  50. 50.
    E. Moskvin, S. Grigoriev, V. Dyadkin, H. Eckerlebe, M. Baenitz, M. Schmidt, H. Wilhelm, Complex chiral modulations in FeGe close to magnetic ordering. Phys. Rev. Lett. 110, 077207 (2013).  https://doi.org/10.1103/PhysRevLett.110.077207
  51. 51.
    Y. Tokunaga, X.Z. Yu, J.S. White, H.M. Rønnow, D. Morikawa, Y. Taguchi, Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).  https://doi.org/10.1038/ncomms8638
  52. 52.
    M.C. Langner, S. Roy, S.K. Mishra, J.C.T. Lee, X.W. Shi, M.A. Hossain, Y.-D. Chuang, S. Seki, Y. Tokura, S.D. Kevan, R.W. Schoenlein, Coupled skyrmion sublattices in Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 112, 167202 (2014).  https://doi.org/10.1103/PhysRevLett.112.167202
  53. 53.
    S.L. Zhang, A. Bauer, H. Berger, C. Pfleiderer, G. van der Laan, T. Hesjedal, Multidomain skyrmion lattice state in Cu\(_2\)OSeO\(_3\). Appl. Phys. Lett. 109, 192406 (2016).  https://doi.org/10.1063/1.4967499ADSCrossRefGoogle Scholar
  54. 54.
    X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106 (2011).  https://doi.org/10.1038/nmat2916ADSCrossRefGoogle Scholar
  55. 55.
    S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).  https://doi.org/10.1126/science.1214143ADSCrossRefGoogle Scholar
  56. 56.
    J. Rajeswari, P. Huang, G.F. Mancini, Y. Murooka, T. Latychevskaia, D. McGrouther, M. Cantoni, E. Baldini, J.S. White, A. Magrez, T. Giamarchi, H.M. Rønnow, F. Carbone, Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy. Proc. Natl. Acad. Sci. USA 112, 14212 (2015).  https://doi.org/10.1073/pnas.1513343112ADSCrossRefGoogle Scholar
  57. 57.
    S. Pöllath, J. Wild, L. Heinen, T.N.G. Meier, M. Kronseder, L. Tutsch, A. Bauer, H. Berger, C. Pfleiderer, J Zweck, A. Rosch, C.H. Back, Dynamical defects in rotating magnetic skyrmion lattices. Phys. Rev. Lett. 118, 207205 (2017).  https://doi.org/10.1103/PhysRevLett.118.207205
  58. 58.
    H.S. Park, X. Yu, S. Aizawa, T. Tanigaki, T. Akashi, Y. Takahashi, T. Matsuda, N. Kanazawa, Y. Onose, D. Shindo, A. Tonomura, Y. Tokura, Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nano. 9, 337 (2014).  https://doi.org/10.1038/nnano.2014.52ADSCrossRefGoogle Scholar
  59. 59.
    M. Mochizuki, Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys. Rev. Lett. 108, 017601 (2012).  https://doi.org/10.1103/PhysRevLett.108.017601
  60. 60.
    Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, Y. Tokura, Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 109, 037603 (2012).  https://doi.org/10.1103/PhysRevLett.109.037603
  61. 61.
    T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, A. Rosch, C. Pfleiderer, D. Grundler, Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat. Mater. 14, 478 (2015).  https://doi.org/10.1038/nmat4223ADSCrossRefGoogle Scholar
  62. 62.
    I. Stasinopoulos, S. Weichselbaumer, A. Bauer, J. Waizner, H. Berger, M. Garst, C. Pfleiderer, D. Grundler, Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu\(_2\)OSeO\(_3\). Sci. Rep. 7, 7037 (2017).  https://doi.org/10.1038/s41598-017-07020-2
  63. 63.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).  https://doi.org/10.1103/PhysRevLett.106.156603
  64. 64.
    Y. Shiomi, N. Kanazawa, K. Shibata, Y. Onose, Y. Tokura, Topological Nernst effect in a three-dimensional skyrmion-lattice phase. Phys. Rev. B 88, 064409 (2013).  https://doi.org/10.1103/PhysRevB.88.064409
  65. 65.
    T. Tanigaki, K. Shibata, N. Kanazawa, X.Z. Yu, S. Aizawa, Y. Onose, H.S. Park, D. Shindo, Y. Tokura, Real-space observation of short-period cubic lattice of skyrmions in MnGe. Nano Lett. 15, 5438 (2015).  https://doi.org/10.1021/acs.nanolett.5b02653ADSCrossRefGoogle Scholar
  66. 66.
    N. Kanazawa, Y. Nii, X.-X. Zhang, A.S. Mishchenko, G.D. Filippis, F. Kagawa, Y. Iwasa, N. Nagaosa, and Y. Tokura, Critical phenomena of emergent magnetic monopoles in a chiral magnet. Nat. Commun. 7, 11622 (2016).  https://doi.org/10.1038/ncomms11622ADSCrossRefGoogle Scholar
  67. 67.
    E. Ruff, S. Widmann, P. Lunkenheimer, V. Tsurkan, S. Bordács, I. Kézsmárki, A. Loidl, Multiferroicity and skyrmions carrying electric polarization in GaV\(_4\)S\(_8\). Sci. Adv. 1, e1500916 (2015).  https://doi.org/10.1126/sciadv.1500916ADSCrossRefGoogle Scholar
  68. 68.
    T. Kurumaji, T. Nakajima, V. Ukleev, A. Feoktystov, T. h. Arima, K. Kakurai, Y. Tokura, Néel-type skyrmion lattice in tetragonal polar magnet VOSe\(_2\)O\(_5\). Phys. Rev. Lett. 119, 237201 (2017)Google Scholar
  69. 69.
    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Topological Hall effect in the \(A\) phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).  https://doi.org/10.1103/PhysRevLett.102.186602
  70. 70.
    C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y.  Mokrousov, C. Pfleiderer, Real-space and reciprocal-space Berry phases in the Hall effect of Mn\(_{1-x}\)Fe\(_x\)Si. Phys. Rev. Lett. 112, 186601 (2014).  https://doi.org/10.1103/PhysRevLett.112.186601
  71. 71.
    N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).  https://doi.org/10.1103/RevModPhys.82.1539ADSCrossRefGoogle Scholar
  72. 72.
    J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).  https://doi.org/10.1016/0304-8853(96)00062-5ADSCrossRefGoogle Scholar
  73. 73.
    L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).  https://doi.org/10.1103/PhysRevB.54.9353ADSCrossRefGoogle Scholar
  74. 74.
    M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, P. Wyder, Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).  https://doi.org/10.1103/PhysRevLett.80.4281ADSCrossRefGoogle Scholar
  75. 75.
    E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Current-induced switching of domains in magnetic multilayer devices. Science 285, 867 (1999).  https://doi.org/10.1126/science.285.5429.867CrossRefGoogle Scholar
  76. 76.
    J. Grollier, P. Boulenc, V. Cros, A. Hamzić, A. Vaurès, A. Fert, G. Faini, Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509 (2003).  https://doi.org/10.1063/1.1594841ADSCrossRefGoogle Scholar
  77. 77.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190 (2008).  https://doi.org/10.1126/science.1145799ADSCrossRefGoogle Scholar
  78. 78.
    S.S.P. Parkin, S.-H. Yang, Memory on the racetrack. Nat. Nano. 10, 221 (2015).  https://doi.org/10.1038/nnano.2015.41ADSCrossRefGoogle Scholar
  79. 79.
    F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648 (2010).  https://doi.org/10.1126/science.1195709ADSCrossRefGoogle Scholar
  80. 80.
    K. Everschor, M. Garst, R.A. Duine, A. Rosch, Current-induced rotational torques in the skyrmion lattice phase of chiral magnets. Phys. Rev. B 84, 064401 (2011).  https://doi.org/10.1103/PhysRevB.84.064401
  81. 81.
    X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura, Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).  https://doi.org/10.1038/ncomms1990
  82. 82.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).  https://doi.org/10.1038/ncomms2442
  83. 83.
    T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301 (2012).  https://doi.org/10.1038/nphys2231ADSCrossRefGoogle Scholar
  84. 84.
    M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, N. Nagaosa, Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13, 241 (2014).  https://doi.org/10.1038/nmat3862ADSCrossRefGoogle Scholar
  85. 85.
    S. Seki, S. Ishiwata, Y. Tokura, Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. B 86, 060403 (2012).  https://doi.org/10.1103/PhysRevB.86.060403
  86. 86.
    J.S. White, K. Prša, P. Huang, A.A. Omrani, I. Živković, M. Bartkowiak, H. Berger, A. Magrez, J.L. Gavilano, G. Nagy, J. Zang, H.M. Rønnow, Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 113, 107203 (2014).  https://doi.org/10.1103/PhysRevLett.113.107203
  87. 87.
    Y. Okamura, F. Kagawa, S. Seki, Y. Tokura, Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat. Commun. 7, 12669 (2016).  https://doi.org/10.1038/ncomms12669ADSCrossRefGoogle Scholar
  88. 88.
    A.J. Kruchkov, J.S. White, M. Bartkowiak, I. Zivcovic, A. Magrez, H.M. Rønnow, Direct control of the skyrmion phase stability by electric field in a magnetoelectric insulator (2017). arXiv:1703.06081
  89. 89.
    A. Bauer, M. Garst, C. Pfleiderer, History dependence of the magnetic properties of single-crystal Fe\(_{1-x}\)Co\(_x\)Si. Phys. Rev. B 93, 235144 (2016).  https://doi.org/10.1103/PhysRevB.93.235144
  90. 90.
    A. Bauer, A. Chacon, M. Halder, J. Kindervater, S. Mühlbauer, A. Heinemann, C. Pfleiderer, Topological protection of super-cooled skyrmion lattice order in Fe\(_{1-x}\)Co\(_x\)Si (2018)Google Scholar
  91. 91.
    L.J. Bannenberg, A.J.E. Lefering, K. Kakurai, Y. Onose, Y. Endoh, Y. Tokura, C. Pappas, Magnetic relaxation phenomena in the chiral magnet Fe\(_{1-x}\)Co\(_x\)Si: An ac susceptibility study. Phys. Rev. B 94, 134433 (2016).  https://doi.org/10.1103/PhysRevB.94.134433
  92. 92.
    A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, C. Pfleiderer, Quantum phase transitions in single-crystal Mn\(_{1-x}\)Fe\(_x\)Si and Mn\(_{1-x}\)Co\(_x\)Si: Crystal growth, magnetization, ac susceptibility, and specific heat. Phys. Rev. B 82, 064404 (2010).  https://doi.org/10.1103/PhysRevB.82.064404
  93. 93.
    J. Kindervater, T. Adams, A. Bauer, F. Haslbeck, A. Chacon, S. Mühlbauer, F. Jonietz, A. Neubauer, U. Gasser, G. Nagy, N. Martin, W. Häußler, R. Georgii, M. Garst, C. Pfleiderer, Helical and skyrmion lattice order in Mn\(_{1-x}\)Fe\(_x\)Si and Mn\(_{1-x}\)Co\(_x\)Si (2018)Google Scholar
  94. 94.
    L.J. Bannenberg, K. Kakurai, F. Qian, E. Lelièvre-Berna, C.D. Dewhurst, Y. Onose, Y. Endoh, Y. Tokura, C. Pappas, Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe\(_{1-x}\)Co\(_x\)Si. Phys. Rev. B 94, 104406 (2016).  https://doi.org/10.1103/PhysRevB.94.104406
  95. 95.
    T. Adams, S. Mühlbauer, A. Neubauer, W. Münzer, F. Jonietz, R. Georgii, B. Pedersen, P. Böni, A. Rosch, C. Pfleiderer, Skyrmion lattice domains in Fe\(_{1-x}\)Co\(_x\)Si. J. Phys.: Conf. Ser. 200, 032001 (2010).  https://doi.org/10.1088/1742-6596/200/3/032001Google Scholar
  96. 96.
    K. Makino, J.D. Reim, D. Higashi, D. Okuyama, T.J. Sato, Y. Nambu, E.P. Gilbert, N. Booth, S. Seki, Y. Tokura, Thermal stability and irreversibility of skyrmion-lattice phases in Cu\(_2\)OSeO\(_3\). Phys. Rev. B 95, 134412 (2017).  https://doi.org/10.1103/PhysRevB.95.134412
  97. 97.
    L.J. Bannenberg, F. Qian, R.M. Dalgliesh, N. Martin, G. Chaboussant, M. Schmidt, D.L. Schlagel, T.A. Lograsso, H. Wilhelm, C. Pappas, Reorientations, relaxations, metastabilities and domains of skyrmion lattices. Phys. Rev. B 96, 184416 (2017). https://doi.org/10.1103/PhysRevB.96.184416
  98. 98.
    A. Bauer, C. Pfleiderer, Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility. Phys. Rev. B 85, 214418 (2012).  https://doi.org/10.1103/PhysRevB.85.214418
  99. 99.
    A. Bauer, M. Garst, C. Pfleiderer, Specific heat of the skyrmion lattice phase and field-induced tricritical point in MnSi. Phys. Rev. Lett. 110, 177207 (2013).  https://doi.org/10.1103/PhysRevLett.110.177207
  100. 100.
    I. Levatić, V. Šurija, H. Berger, I. Živković, Dissipation processes in the insulating skyrmion compound Cu\(_2\)OSeO\(_3\). Phys. Rev. B 90, 224412 (2014).  https://doi.org/10.1103/PhysRevB.90.224412
  101. 101.
    F. Qian, H. Wilhelm, A. Aqeel, T.T.M. Palstra, A.J.E. Lefering, E.H. Brück, C. Pappas, Phase diagram and magnetic relaxation phenomena in Cu\(_2\)OSeO\(_3\). Phys. Rev. B 94, 064418 (2016).  https://doi.org/10.1103/PhysRevB.94.064418
  102. 102.
    K. Karube, J.S. White, N. Reynolds, J.L. Gavilano, H. Oike, A. Kikkawa, F. Kagawa, Y. Tokunaga, H.M. Rønnow, Y. Tokura, and Y. Taguchi, Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat. Mater. 15, 1237 (2015).  https://doi.org/10.1038/nmat4752ADSCrossRefGoogle Scholar
  103. 103.
    K. Karube, J.S. White, D. Morikawa, M. Bartkowiak, A. Kikkawa, Y. Tokunaga, T. Arima, H.M. Rønnow, Y. Tokura, Y. Taguchi, Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature. Phys. Rev. Mater. 1, 074405 (2017). https://doi.org/10.1103/PhysRevMaterials.1.074405
  104. 104.
    H. Oike, A. Kikkawa, N. Kanazawa, Y. Taguchi, M. Kawasaki, Y. Tokura, F. Kagawa, Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62 (2016).  https://doi.org/10.1038/nphys3506ADSCrossRefGoogle Scholar
  105. 105.
    F.N. Rybakov, A.B. Borisov, S. Blügel, N.S. Kiselev, New type of stable particlelike states in chiral magnets. Phys. Rev. Lett. 115, 117201 (2015).  https://doi.org/10.1103/PhysRevLett.115.117201
  106. 106.
    R. Ritz, M. Halder, C. Franz, A. Bauer, M. Wagner, R. Bamler, A. Rosch, C. Pfleiderer, Giant generic topological Hall resistivity of MnSi under pressure. Phys. Rev. B 87, 134424 (2013).  https://doi.org/10.1103/PhysRevB.87.134424
  107. 107.
    C. Pfleiderer, P. Böni, T. Keller, U.K. Rößler, A. Rosch, Non-fermi liquid metal without quantum criticality. Science 316, 1871 (2007).  https://doi.org/10.1126/science.1142644ADSCrossRefGoogle Scholar
  108. 108.
    R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, C. Pfleiderer, Formation of a topological non-Fermi liquid in MnSi. Nature 497, 231 (2013).  https://doi.org/10.1038/nature12023ADSCrossRefGoogle Scholar
  109. 109.
    C. Pfleiderer, G.J. McMullan, S.R. Julian, G.G. Lonzarich, Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330 (1997).  https://doi.org/10.1103/PhysRevB.55.8330ADSCrossRefGoogle Scholar
  110. 110.
    C. Thessieu, C. Pfleiderer, A.N. Stepanov, J. Flouquet, Field dependence of the magnetic quantum phase transition in MnSi. J. Phys.: Condens. Matter 9, 6677 (1997).  https://doi.org/10.1088/0953-8984/9/31/019ADSGoogle Scholar
  111. 111.
    C. Pfleiderer, S.R. Julian, G.G. Lonzarich, Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427 (2001).  https://doi.org/10.1038/35106527ADSCrossRefGoogle Scholar
  112. 112.
    N. Doiron-Leyraud, I.R. Walker, L. Taillefer, M.J. Steiner, S.R. Julian, G.G. Lonzarich, Fermi-liquid breakdown in the paramagnetic phase of a pure metal. Nature 425, 595 (2003).  https://doi.org/10.1038/nature01968ADSCrossRefGoogle Scholar
  113. 113.
    C. Pfleiderer, D. Reznik, L. Pintschovius, H.V. Löhneysen, M. Garst, A. Rosch, Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227 (2004).  https://doi.org/10.1038/nature02232ADSCrossRefGoogle Scholar
  114. 114.
    Y.J. Uemura, T. Goko, I.M. Gat-Malureanu, J.P. Carlo, P.L. Russo, A.T. Savici, A. Aczel, G.J. MacDougall, J.A. Rodriguez, G.M. Luke, S.R. Dunsiger, A. McCollam, J. Arai, C. Pfleiderer, P. Böni, K. Yoshimura, E. Baggio-Saitovitch, M.B. Fontes, J. Larrea, Y.V. Sushko, J. Sereni, Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr\(_{1-x}\)Ca\(_x\))RuO\(_3\). Nat. Phys. 3, 29 (2007).  https://doi.org/10.1038/nphys488ADSCrossRefGoogle Scholar
  115. 115.
    T. Nakajima, H. Oike, A. Kikkawa, E.P. Gilbert, N. Booth, K. Kakurai, Y. Taguchi, Y. Tokura, F. Kagawa, T.-H. Arima, Skyrmion lattice structural transition in MnSi. Sci. Adv. 3, e1602562 (2017).  https://doi.org/10.1126/sciadv.1602562ADSCrossRefGoogle Scholar
  116. 116.
    N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122 (2015).  https://doi.org/10.1103/PhysRevB.91.041122
  117. 117.
    A. Dussaux, P. Schoenherr, K. Koumpouras, J. Chico, K. Chang, L. Lorenzelli, N. Kanazawa, Y. Tokura, M. Garst, A. Bergman, C.L. Degen, D. Meier, Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe. Nat. Commun. 7, 12430 (2016).  https://doi.org/10.1038/ncomms12430ADSCrossRefGoogle Scholar
  118. 118.
    A. Bauer, A. Chacon, M. Wagner, M. Halder, R. Georgii, A. Rosch, C. Pfleiderer, M. Garst, Symmetry breaking, slow relaxation dynamics, and topological defects at the field-induced helix reorientation in MnSi. Phys. Rev. B 95, 024429 (2017).  https://doi.org/10.1103/PhysRevB.95.024429
  119. 119.
    J. Müller, J. Rajeswari, P. Huang, Y. Murooka, H.M. Rønnow, F. Carbone, A. Rosch, magnetic skyrmions and skyrmion clusters in the Helical phase of Cu\(_2\)OSeO\(_3\). Phys. Rev. Lett. 119, 137201 (2017).  https://doi.org/10.1103/PhysRevLett.119.137201

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andreas Bauer
    • 1
  • Alfonso Chacon
    • 1
  • Marco Halder
    • 1
  • Christian Pfleiderer
    • 1
    Email author
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations