Advertisement

Magnetic Skyrmions in Thin Films

  • Gong ChenEmail author
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 192)

Abstract

The microstructure of magnetic materials such as magnetic domains and domain walls, linking to its basic physical properties, is generally considered as a result of the interplay between exchange interaction, anisotropy and magnetic dipolar interaction.

Notes

Acknowledgements

Gong Chen was supported by the NSF (DMR-1610060) and the UC Office of the President Multicampus Research Programs and Initiatives (MRP-17-454963).

References

  1. 1.
    A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin, 1998)Google Scholar
  2. 2.
    B.A. Joyce, Molecular beam epitaxy. Rep. Prog. Phys. 48, 1637 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hubert, Stray-field-free magnetization configurations. Phys. Status Solidi 32, 519–534 (1969)CrossRefGoogle Scholar
  4. 4.
    Y.Z. Wu, C. Won, A. Scholl, A. Doran, H.W. Zhao, X.F. Jin, Z.Q. Qiu, Magnetic stripe domains in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A. Thiaville, S. Rohart, É. Jué, V. Cros, A. Fert, Europhys. Lett. 100, 57002 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    I.E. Dzyaloshinskii, Thermodynamic theory of’’weak’’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957)zbMATHGoogle Scholar
  7. 7.
    T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)ADSCrossRefGoogle Scholar
  8. 8.
    G. Chen, J. Zhu, A. Quesada, J. Li, A.T. N’Diaye, Y. Huo, T.P. Ma, Y. Chen, H.Y. Kwon, C. Won, Z.Q. Qiu, A.K. Schmid, Y.Z. Wu, Novel chiral magnetic domain wall structure in Fe/Ni/Cu (001) films. Phys. Rev. Lett. 110, 177204 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    K.-O. Ng, D. Vanderbilt, Stability of periodic domain structures in a two-dimensional dipolar model. Phys. Rev. B 52, 2177 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A.B. Kashuba, V.L. Pokrovsky, Stripe domain structures in a thin ferromagnetic film. Phys. Rev. B 48, 10335 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A. Vindigni, D. Pescia, Experimental phase diagram of perpendicularly magnetized ultrathin ferromagnetic films. Phys. Rev. Lett. 104, 077203 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G. Chen, A.K. Schmid, Imaging and tailoring the chirality of domain walls in magnetic films. Adv. Mater. 27, 5738–5743 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Everschor, Current-Induced Dynamics of Chiral Magnetic Structures: Skyrmions, Emergent Electrodynamics and Spin-Transfer Torques (Univ. zu Köln, Thesis, 2012)Google Scholar
  16. 16.
    R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Fert, N. Reyren, V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A. Fert, Magnetic and transport properties of metallic multilayers. Metallic Multilayers. 59–60, 439–480 (1990)Google Scholar
  20. 20.
    A. Crépieux, C. Lacroix, Dzyaloshinskii-Moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    G. Chen, A.K. Schmid, Y. Wu, Imaging and tailoring chiral spin textures using spin-polarized electron microscopy, in Skyrmions: Topological Structures, Properties, and Applications. Chapter 5 (CRC Press, 2016)Google Scholar
  23. 23.
    H.-B. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Fert, P.M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    G. Chen, A. Mascaraque, A.T. N’Diaye, A.K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, R. Wiesendanger, Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    V. Kashid, T. Schena, B. Zimmermann, Y. Mokrousov, S. Blügel, V. Shah, H.G. Salunke, Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d-5d zigzag chains: tight-binding model and ab initio calculations. Phys. Rev. B 90, 054412 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    H. Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev, Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    K.S. Ryu, S.H. Yang, L. Thomas, S.S. Parkin, Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, A. Manchon, Hund’s rule-Driven Dzyaloshinskii-Moriya interaction at 3d-5d interfaces. Phys. Rev. Lett. 117, 247202 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    P. Ferriani, K. von Bergmann, E.Y. Vedmedenko, S. Heinze, M. Bode, M. Heide, G. Bihlmayer, S. Blügel, R. Wiesendanger, Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    S. Meckler, N. Mikuszeit, A. Pressler, E.Y. Vedmedenko, O. Pietzsch, R. Wiesendanger, Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. Phys. Rev. Lett. 103, 157201 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Yoshida, S. Schröder, P. Ferriani, D. Serrate, A. Kubetzka, K. von Bergmann, S. Heinze, R. Wiesendanger, Conical spin-spiral state in an ultrathin film driven by higher-order spin interactions. Phys. Rev. Lett. 108, 087205 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011)CrossRefGoogle Scholar
  37. 37.
    B. Dupe, M. Hoffmann, C. Paillard, S. Heinze, Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion Lattice in a Chiral Magnet. Science 323, 915–919 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Tokunaga, X.Z. Yu, J.S. White, H.M. Rønnow, D. Morikawa, Y. Taguchi, Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    N. Kanazawa, S. Seki, Y. Tokura, Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 1603227 (2017).  https://doi.org/10.1002/adma.201603227CrossRefGoogle Scholar
  43. 43.
    W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T.O. Mentes, A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigne, A. Stashkevich, S.M. Cherif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, G. Gaudin, Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016)CrossRefGoogle Scholar
  46. 46.
    G. Chen, A.T. N’Diaye, Y.Z. Wu, A.K. Schmid, Ternary superlattice boosting interface-stabilized magnetic chirality. Appl. Phys. Lett. 106, 062402 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    C. Moreau-Luchaire, S.C. Mouta, N. Reyren, J. Sampaio, C.A. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J.M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    S. Woo, K. Litzius, B. Kruger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.A. Mawass, P. Fischer, M. Kläui, G.S. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    A. Soumyanarayanan, M. Raju, A.L. Oyarce, A.K.C. Tan, M.-Y. Im, A.P. Petrovic, P. Ho, K.H. Khoo, M. Tran, C.K. Gan, F. Ernult, C. Panagopoulos. Tunable room temperature magnetic skyrmions in Ir/Fe/Co/Pt Multilayers. Nat. Mater. 16, 898–904 (2017)Google Scholar
  50. 50.
    Y.Z. Wu, C. Won, A. Scholl, A. Doran, H.W. Zhao, X.F. Jin, Z.Q. Qiu, Magnetic stripe domains in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    J. Wu, J. Choi, C. Won, Y.Z. Wu, A. Scholl, A. Doran, C. Hwang, Z.Q. Qiu, Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001). Phys. Rev. B 79, 014429 (2009)Google Scholar
  52. 52.
    K. Zakeri, Y. Zhang, J. Prokop, T.H. Chuang, N. Sakr, W.X. Tang, J. Kirschner, Asymmetric spin-wave dispersion on Fe(110): direct evidence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 104, 137203 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    H.T. Nembach, J.M. Shaw, M. Weiler, E. Jué, T.J. Silva, Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).ADSCrossRefGoogle Scholar
  54. 54.
    K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, J. Yu, J. Yoon, X. Qiu, H. Yang, Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, X. Qiu, H. Yang, Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    M. Belmeguenai, J.-P. Adam, Y. Roussigné, S. Eimer, T. Devolder, J.-V. Kim, S.M. Cherif, A. Stashkevich, A. Thiaville. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405(R) (2015)Google Scholar
  57. 57.
    A.A. Stashkevich, M. Belmeguenai, Y. Roussigné, S.M. Cherif, M. Kostylev, M. Gabor, D. Lacour, C. Tiusan, M. Hehn, Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction. Phys. Rev. B 91, 214409 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    G. Chen, T.P. Ma, A.T. N’Diaye, H. Kwon, C. Won, Y.Z. Wu, A.K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 3671 (2013)Google Scholar
  59. 59.
    Y. Yafet, E.M. Gyorgy, Ferromagnetic strip domains in an atomic monolayer. Phys. Rev. B 38, 9145 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    A.B. Kashuba, V.L. Pokrovsky, Stripe domain structures in a thin ferromagnetic film. Phys. Rev. B 48, 10335 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    K.-O. Ng, D. Vanderbilt, Stability of periodic domain structures in a two-dimensional dipolar model. Phys. Rev. B 52, 2177 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    Y.Z. Wu, C. Won, A. Scholl, A. Doran, H.W. Zhao, X.F. Jin, Z.Q. Qiu, Magnetic stripe domains in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A. Vindigni, D. Pescia, Experimental phase diagram of perpendicularly magnetized ultrathin ferromagnetic films. Phys. Rev. Lett. 104, 077203 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    S.-G. Je, D.-H. Kim, S.-C. Yoo, B.-C. Min, K.-J. Lee, S.-B. Choe, Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 214401 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    A. Hrabec, N.A. Porter, A. Wells, M.J. Benitez, G. Burnell, S. McVitie, D. McGrouther, T.A. Moore, C.H. Marrows, Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 0204402(R) (2014)CrossRefGoogle Scholar
  66. 66.
    S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, A. Thiaville, Chirality-Induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-M. Ahn, P. Agrawal, D.C. Bono, G.S.D. Beach, Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    J.H. Franken, M. Herps, H.J.M. Swagten, B. Koopmans, Tunable chiral spin texture in magnetic domain-walls. Sci Rep. 4, 5248 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    J. Torrejon, J. Kim, J. Sinha, S. Mitani, M. Hayashi, M. Yamanouchi, H. Ohno, Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 5, 4655 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    R. Lavrijsen, D.M.F. Hartmann, A. van den Brink, Y. Yin, B. Barcones, R.A. Duine, M.A. Verheijen, H.J.M. Swagten, B. Koopmans, Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering. Phys. Rev. B 91, 104414 (2015)ADSCrossRefGoogle Scholar
  71. 71.
    K.-W. Moon, D.-H. Kim, S.-C. Yoo, S.-G. Je, B.S. Chun, W. Kim, B.-C. Min, C. Hwang, S.-B. Choe, Magnetic bubblecade memory based on chiral domain walls. Sci Rep. 5, 9166 (2015)Google Scholar
  72. 72.
    E. Jué, C.K. Safeer, M. Drouard, A. Lopez, P. Balint, L. Buda-Prejbeanu, O. Boulle, S. Auffret, A. Schuhl, A. Manchon, I.M. Miron, G. Gaudin. Chiral damping of magnetic domain walls. Nat. Mater. 15, 272–277 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    O. Boulle, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, I.M. Miron, S. Pizzini, J. Vogel, G. Gaudin, A. Thiaville, Domain wall tilting in the presence of the Dzyaloshinskii-Moriya Interaction in out-of-plane magnetized magnetic nanotracks. Phys. Rev. Lett. 111, 217203 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    S.A. Meynell, M.N. Wilson, H. Fritzsche, A.N. Bogdanov, T.L. Monchesky, Surface twist instabilities and skyrmion states in chiral ferromagnets. Phys. Rev. B 90, 014406 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    M. Cubukcu, J. Sampaio, K. Bouzehouane, D. Apalkov, A.V. Khvalkovskiy, V. Cros, N. Reyren, Dzyaloshinskii-Moriya anisotropy in nanomagnets with in-plane magnetization. Phys. Rev. B 93, 020401(R) (2016)ADSCrossRefGoogle Scholar
  76. 76.
    D.S. Han, N.H. Kim, J.S. Kim, Y. Yin, J.W. Koo, J. Cho, S. Lee, M. Kläui, H.J. Swagten, B. Koopmans, C.Y. You, Asymmetric hysteresis for probing Dzyaloshinskii-Moriya interaction. Nano Lett. 16, 4438–4446 (2016)ADSCrossRefGoogle Scholar
  77. 77.
    J. Vogel, J. Moritz, O. Fruchart, Nucleation of magnetisation reversal, from nanoparticles to bulk materials. C R Phys. 7, 977–987 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    E. Magnano, E. Carleschi, A. Nicolaou, T. Pardini, M. Zangrando, F. Parmigiani, Growth of manganese silicide films by co-deposition of Mn and Si on Si(111): A spectroscopic and morphological investigation. Surf. Sci. 600, 3932–3937 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    S. Higashi, P. Kocán, H. Tochihara, Reactive epitaxial growth of MnSi ultrathin films on Si(111) by Mn deposition. Phys. Rev. B 79, 205312 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    S. Azatyan, O. Utas, N. Denisov, A. Zotov, A. Saranin, Variable termination of MnSi/Si(111) √3 × √3 films and its effect on surface properties. Surf. Sci. 605, 289–295 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    E. Magnano, F. Bondino, C. Cepek, F. Parmigiani, M.C. Mozzati, Ferromagnetic and ordered MnSi(111) epitaxial layers. Appl. Phys. Lett. 96, 152503 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    E.A. Karhu, S. Kahwaji, T.L. Monchesky, C. Parsons, M.D. Robertson, C. Maunders, Structure and magnetic properties of MnSi epitaxial thin films. Phys. Rev. B 82, 184417 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    E.A. Karhu, U.K. Rößler, A.N. Bogdanov, S. Kahwaji, B.J. Kirby, H. Fritzsche, M.D. Robertson, C.F. Majkrzak, T.L. Monchesky, Chiral modulations and reorientation effects in MnSi thin films. Phys. Rev. B 85, 094429 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    M.N. Wilson, E.A. Karhu, A.S. Quigley, U.K. Rößler, A.B. Butenko, A.N. Bogdanov, M.D. Robertson, T.L. Monchesky, Extended elliptic skyrmion gratings in epitaxial MnSi thin films. Phys. Rev. B 86, 144420 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    S.X. Huang, C.L. Chien, Extended skyrmion phase in epitaxial FeGe (111) thin films. Phys. Rev. Lett. 108, 267201 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    Y.F. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X.F. Jin, F. Kagawa, Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    J.C. Gallagher, K.Y. Meng, J.T. Brangham, H.L. Wang, B.D. Esser, D.W. McComb, F.Y. Yang, Robust zero-field skyrmion formation in FeGe epitaxial thin films. Phys. Rev. Lett. 118, 027201 (2017)ADSCrossRefGoogle Scholar
  88. 88.
    F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Real-space observation of helical spin order. Science 311, 359–361 (2006)ADSCrossRefGoogle Scholar
  91. 91.
    J. Ye, Y.B. Kim, A.J. Millis, B.I. Shraiman, P. Majumdar, Z. Tešanović, Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737 (1999)ADSCrossRefGoogle Scholar
  92. 92.
    P. Bruno, V.K. Dugaev, M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    M. Lee, W. Kang, Y. Onose, Y. Tokura, N.P. Ong, Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012)CrossRefGoogle Scholar
  97. 97.
    N. Rougemaille, A.K. Schmid, Magnetic imaging with spin-polarized low-energy electron microscopy. Eur. Phys. J. Appl. Phys. 50, 20101 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    G. Chen, A.T. N’Diaye, S.P. Kang, H.Y. Kwon, C. Won, Y. Wu, Z.Q. Qiu, A.K. Schmid, Unlocking bloch-type chirality in ultrathin magnets through uniaxial strain. Nat. Commun. 6, 6598 (2015)Google Scholar
  99. 99.
    G. Chen, S.P. Kang, C. Ophus, A.T. N’Diaye, H.Y. Kwon, R.T. Qiu, C. Won, K. Liu, Y. Wu, A.K. Schmid, Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets. Nat. Commun. 8, 15302 (2017)ADSCrossRefGoogle Scholar
  100. 100.
    A. Scholl, H. Ohldag, F. Nolting, J. Stöhr, H.A. Padmore, X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures. Rev. Sci. Instrum. 73, 1362 (2002)Google Scholar
  101. 101.
    C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Experimental confirmation of the x-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152 (1995)ADSCrossRefGoogle Scholar
  102. 102.
    J. Stöhr, A. Scholl, T.J. Regan, S. Anders, J. Lüning, M.R. Scheinfein, H.A. Padmore, R.L. White, Images of the antiferromagnetic structure of a NiO(100) surface by means of x-ray magnetic linear dichroism spectromicroscopy. Phys. Rev. Lett. 83, 1862 (1999)ADSCrossRefGoogle Scholar
  103. 103.
    M.R. Scheinfein, J. Unguris, M.H. Kelley, D.T. Pierce, R.J. Celotta, Scanning electron microscopy with polarization analysis (SEMPA). Rev. Sci. Instrum. 61, 2501 (1990)ADSCrossRefGoogle Scholar
  104. 104.
    E.C. Corredor, S. Kuhrau, F. Kloodt-Twesten, R. Frömter, H.P. Oepen, SEMPA investigation of the Dzyaloshinskii-Moriya interaction in the single, ideally grown Co/Pt(111) interface. Phys. Rev. B 96, 060410(R) (2017)Google Scholar
  105. 105.
    A. Neudert, J. McCord, D. Chumakov, R. Schäfer, L. Schultz, Small-amplitude magnetization dynamics in permalloy elements investigated by time-resolved wide-field Kerr microscopy. Phys. Rev. B 71, 134405 (2005)ADSCrossRefGoogle Scholar
  106. 106.
    Z.Q. Qiu, S.D. Bader, Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243 (2000)ADSCrossRefGoogle Scholar
  107. 107.
    D.-H. Kim, P. Fischer, W. Chao, E. Anderson, M.-Y. Im, S.-C. Shin, S.-B. Choe, Magnetic soft x-ray microscopy at 15 nm resolution probing nanoscale local magnetic hysteresis. J. Appl. Phys. 99, 08H303 (2006)CrossRefGoogle Scholar
  108. 108.
    R. Streubel, F. Kronast, P. Fischer, D. Parkinson, O.G. Schmidt, D. Makarov, Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nat. Commun. 6, 7612 (2015)ADSCrossRefGoogle Scholar
  109. 109.
    L. Reimer, H. Kohl, Transmission Electron Microscopy (Springer, 2008)Google Scholar
  110. 110.
    M.J. Benitez et al., Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer. Nat. Commun. 6, 8957 (2015)CrossRefGoogle Scholar
  111. 111.
    S.D. Pollard, J.A. Garlow, Yu. Jiawei, Z. Wang, Y. Zhu, H. Yangb, Nat Commun. 8, 14761 (2017)ADSCrossRefGoogle Scholar
  112. 112.
    R. Wiesendanger, Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495 (2009)ADSCrossRefGoogle Scholar
  113. 113.
    J.-P. Tetienne, T. Hingant, L.J. Martínez, S. Rohart, A. Thiaville, L. Herrera Diez, K. Garcia, J.-P. Adam, J.-V. Kim, J.-F. Roch, I.M. Miron, G. Gaudin, L. Vila, B. Ocker, D. Ravelosona, V. Jacques, The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015)CrossRefGoogle Scholar
  114. 114.
    L. Sun, R.X. Cao, B.F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, H.F. Ding, Creating an artificial two-dimensional skyrmion crystal by nanopatterning. Phys. Rev. Lett. 110, 167201 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, D.M. Tricker, Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042 (1999)ADSCrossRefGoogle Scholar
  116. 116.
    H.F. Ding, A.K. Schmid, D.Q. Li, K.Y. Guslienko, S.D. Bader, Magnetic bistability of Co nanodots. Phys. Rev. Lett. 94, 157202 (2005)ADSCrossRefGoogle Scholar
  117. 117.
    R.K. Dumas, T. Gredig, C.P. Li, I.K. Schuller, K. Liu, Angular dependence of vortex-annihilation fields in asymmetric cobalt dots. Phys. Rev. B 80, 014416 (2009)ADSCrossRefGoogle Scholar
  118. 118.
    R.K. Dumas, D.A. Gilbert, N. Eibagi, K. Liu, Chirality control via double vortices in asymmetric Co dots. Phys. Rev. B 83, 060415 (2011)ADSCrossRefGoogle Scholar
  119. 119.
    J. Li, A. Tan, K.W. Moon, A. Doran, M.A. Marcus, A.T. Young, E. Arenholz, S. Ma, R.F. Yang, C. Hwang, Z.Q. Qiu, Tailoring the topology of an artificial magnetic skyrmion. Nat. Commun. 5, 4704 (2014)ADSCrossRefGoogle Scholar
  120. 120.
    B.F. Miao, L. Sun, Y.W. Wu, X.D. Tao, X. Xiong, Y. Wen, R.X. Cao, P. Wang, D. Wu, Q.F. Zhan, B. You, J. Du, R.W. Li, H.F. Ding, Experimental realization of two-dimensional artificial skyrmion crystals at room temperature. Phys. Rev. B 90, 174411 (2014)ADSCrossRefGoogle Scholar
  121. 121.
    D.A. Gilbert, B.B. Maranville, A.L. Balk, B.J. Kirby, P. Fischer, D.T. Pierce, J. Unguris, J.A. Borchers, K. Liu, Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun. 6, 8462 (2015)ADSCrossRefGoogle Scholar
  122. 122.
    B.F. Miao, Y. Wen, M. Yan, L. Sun, R.X. Cao, D. Wu, B. You, Z.S. Jiang, H.F. Ding, Micromagnetic study of excitation modes of an artificial skyrmion crystal. Appl. Phys. Lett. 107, 222402 (2015)ADSCrossRefGoogle Scholar
  123. 123.
    K.Y. Guslienko, Z.V. Gareeva, Gyrotropic skyrmion modes in ultrathin magnetic circular dots. IEEE Magn. Lett. 8, 2616333 (2017)CrossRefGoogle Scholar
  124. 124.
    M. Charilaou, J.F. Loffler, Skyrmion oscillations in magnetic nanorods with chiral interactions. Phys. Rev. B 95, 024409 (20170029Google Scholar
  125. 125.
    M.Y. Im, P. Fischer, H.S. Han, A. Vogel, M.S. Jung, W. Chao, Y.S. Yu, G. Meier, J.I. Hong, K.S. Lee, Simultaneous control of magnetic topologies for reconfigurable vortex arrays. Npg Asia Mater. 9, 199 (2017)CrossRefGoogle Scholar
  126. 126.
    S. Zhang, A.K. Petford-Long, C. Phatak, Creation of artificial skyrmions and antiskyrmions by anisotropy engineering. Sci. Rep. 6, 31248 (2016)ADSCrossRefGoogle Scholar
  127. 127.
    A. Tan, J. Li, A. Scholl, E. Arenholz, A.T. Young, Q. Li, C. Hwang, Z.Q. Qiu, Topology of spin meron pairs in coupled Ni/Fe/Co/Cu(001) disks. Phys. Rev. B 94, 014433 (2016)ADSCrossRefGoogle Scholar
  128. 128.
    F.S. Ma, C. Reichhardt, W.L. Gan, C.J.O. Reichhardt, W.S. Lew, Emergent geometric frustration of artificial magnetic skyrmion crystals. Phys. Rev. B 94, 144405 (2016)ADSCrossRefGoogle Scholar
  129. 129.
    D.A. Gilbert, T. Stückler, K. Lenz, I. Gilbert, J. Unguris, B.B. Maranville, J. Fassbender, H.M. Yu, K. Liu, J.A. Borchers, Room temperature planar artificial skyrmion lattices, in MMM Conference, (2016), pp. BC-07Google Scholar
  130. 130.
    J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013)ADSCrossRefGoogle Scholar
  131. 131.
    P.J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, R. Wiesendanger, Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotech. 12, 123–126 (2017)ADSCrossRefGoogle Scholar
  132. 132.
    C. Hanneken, F. Otte, A. Kubetzka, B. Dupe, N. Romming, K. von Bergmann, R. Wiesendanger, S. Heinze, Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotech. 10, 1039–1042 (2015)ADSCrossRefGoogle Scholar
  133. 133.
    D.M. Crum et al., Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015)CrossRefGoogle Scholar
  134. 134.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Currentinduced skyrmion dynamics in constricted geometries. Nat. Nanotech. 8, 742–747 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    M. Kläui et al., Direct observation of domain-wall pinning at nanoscale constrictions. Appl. Phys. Lett. 87, 102509 (2005)ADSCrossRefGoogle Scholar
  136. 136.
    E. Martinez et al., Thermal effects on domain wall depinning from a single notch. Phys. Rev. Lett. 98, 267202 (2007)ADSCrossRefGoogle Scholar
  137. 137.
    Y. Jang et al., Current-induced domain wall nucleation and its pinning characteristics at a notch in a spin-valve nanowire. Nanotechnology 20, 125401 (2009)ADSCrossRefGoogle Scholar
  138. 138.
    O. Heinonen, W. Jiang, H. Somaily, S.G.E. te Velthuis, A. Hoffmann, Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016)Google Scholar
  139. 139.
    K. von Bergmann, Magnetic bubbles with a twist. Science 349, 234–235 (2015)ADSCrossRefGoogle Scholar
  140. 140.
    X. Zhang et al., Skyrmion–skyrmion and skyrmion–edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015)CrossRefGoogle Scholar
  141. 141.
    X. Zhang, M. Ezawa, Y. Zhou, Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015)ADSCrossRefGoogle Scholar
  142. 142.
    J. Zang, M. Mostovoy, J.H. Han, N. Nagaosa, Phys. Rev. Lett. 107, 136804 (2011)ADSCrossRefGoogle Scholar
  143. 143.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Universal current–velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013)ADSCrossRefGoogle Scholar
  144. 144.
    K. Everschor-Sitte, M. Sitte, Real-space Berry phases: skyrmion soccer. J. Appl. Phys. 115, 172602 (2014)ADSCrossRefGoogle Scholar
  145. 145.
    C. Reichhardt, D. Ray, C.J.O. Reichhardt, Collective transport properties of driven skyrmions with random disorder. Phys. Rev. Lett. 114, 217202 (2015)ADSCrossRefGoogle Scholar
  146. 146.
    C. Reichhardt, C.J.O. Reichhardt, Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems. New J. Phys. 18, 095005 (2016)ADSCrossRefGoogle Scholar
  147. 147.
    C. Reichhardt, C.J.O. Reichhardt, Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate. Phys. Rev. B 94, 094413 (2016)ADSCrossRefGoogle Scholar
  148. 148.
    A. Thiele, Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973)ADSCrossRefGoogle Scholar
  149. 149.
    R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014)ADSCrossRefGoogle Scholar
  150. 150.
    W. Jiang, Z. Xichao, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017)ADSCrossRefGoogle Scholar
  151. 151.
    S. Huang, C. Zhou, G. Chen, H. Shen, A.K. Schmid, K. Liu, W. Yizheng, Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction. Phys. Rev. B 96, 144412 (2017)ADSCrossRefGoogle Scholar
  152. 152.
    J. Muller, A. Rosch, Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 054410 (2015)ADSCrossRefGoogle Scholar
  153. 153.
    Y.-H. Liu, Y.-Q. Li, A mechanism to pin skyrmions in chiral magnets. J. Phys.: Condens. Matter 25, 076005 (2013)ADSGoogle Scholar
  154. 154.
    R.L. Silva, L.D. Secchin, W.A. Moura-Melo, A.R. Pereira, R.L. Stamps, Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities. Phys. Rev. B 89, 054434 (2014)ADSCrossRefGoogle Scholar
  155. 155.
    J. Muller, A. Rosch, Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 054410 (2015)ADSCrossRefGoogle Scholar
  156. 156.
    W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Collin, K. Bouzehouane, V. Cros, A. Fert, Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017)ADSCrossRefGoogle Scholar
  157. 157.
    K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O.A. Tretiakov, J. Förster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G.S.D. Beach, M. Kläui, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017)CrossRefGoogle Scholar
  158. 158.
    X. Zhang, Y. Zhou, M. Ezawa, Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016)ADSCrossRefGoogle Scholar
  159. 159.
    J. Barker, O.A. Tretiakov, Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016)ADSCrossRefGoogle Scholar
  160. 160.
    S.S. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)ADSCrossRefGoogle Scholar
  161. 161.
    L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)ADSCrossRefGoogle Scholar
  162. 162.
    G. Tatara, H. Kohno, Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 08660 (2004)CrossRefGoogle Scholar
  163. 163.
    S.Z. Lin, C. Reichhardt, C.D. Batista, A. Saxena, Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep. Phys. Rev. B 87, 214419 (2013)ADSCrossRefGoogle Scholar
  164. 164.
    J.E. Hirsch, Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)ADSCrossRefGoogle Scholar
  165. 165.
    S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)ADSCrossRefGoogle Scholar
  166. 166.
    G.Q. Yu, P. Upadhyaya, X. Li, W.Y. Li, S.K. Kim, Y.B. Fan, K.L. Wong, Y. Tserkovnyak, P.K. Amiri, K.L. Wang, Room-temperature creation and spin orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016)ADSCrossRefGoogle Scholar
  167. 167.
    W. Jiang, G. Chen, K. Liu, J. Zang, Suzanne G.E. te Velthuis, Axel Hoffmann, Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017)ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    X. Ma, Yu. Guoqiang, S.A. Razavi, S.S. Sasaki, X. Li, K. Hao, S.H. Tolbert, K.L. Wang, X. Li, Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface. Phys. Rev. Lett. 119, 027202 (2017)ADSCrossRefGoogle Scholar
  169. 169.
    H. Yang, G. Chen, A.A.C. Cotta, A.T. N’Diaye, S.A. Nikolaev, E.A. Soares, W.A.A. Macedo, K. Liu, A.K. Schmid, A.Fert, M. Chshiev, Significant Dzyaloshinskii-Moriya Interaction at Graphene-Ferromagnet Interfaces due to Rashba-effect. Nat. Mater. 17, 605–609 (2018)Google Scholar
  170. 170.
    M. Hoffmann, B. Zimmermann, G.P. Müller, D. Schürhoff, N.S. Kiselev, C. Melcher, S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions. Nat. Commun. 8, 308 (2017)ADSCrossRefGoogle Scholar
  171. 171.
    A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, S.S.P. Parkin, Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561 (2017)ADSCrossRefGoogle Scholar
  172. 172.
    A. Hrabec, J. Sampaio, M. Belmeguenai, I. Gross, R. Weil, S.M. Chérif, A. Stachkevitch, V. Jacques, A. Thiaville, S. Rohart, Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017)ADSCrossRefGoogle Scholar
  173. 173.
    G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P.K. Amiri, K.L. Wang, Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017)ADSCrossRefGoogle Scholar
  174. 174.
    W. Jiang, W. Zhang, G.Q. Yu, M.B. Jungfleisch, P. Upadhyaya, H. Somaily, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Mobile Néel skyrmions at room temperature: status and future. AIP Adv. 6, 055602 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of CaliforniaDavisUSA

Personalised recommendations