Skip to main content

Magnetic Vortices

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

Abstract

Magnetic vortices are topological objects found in magnetic thin films and microstructures. The study of vortices has attracted much attention for their fundamental beauty and because vortices could be constituents of non-volatile storage and sensing devices as well as of radiofrequency and neuro-inspired devices. Many important experimental, theoretical, and simulational contributions have been made to understand the intricate details of the statics and dynamics of magnetic vortices. In this chapter we start from first experimental observations and proceed to the occurence of vortices, their static properties as well as their topology. The polarization of vortex cores and the circularity of their in-plane magnetization are introduced. The minimization of micromagnetic energy contributions that lead to an out-of-plane core region and an in-plane circulation of magnetization are discussed, along with geometries for confinement and their response in static external magnetic fields. We analyze stray fields in the vicinity of a vortex, their hysteresis as well as their thermal stability before we address dynamic properties. The relation between handedness and sense of gyration are described and the harmonic oscillator model for small excitations is introduced. Then modifications of the oscillator model for strong excitations including nonlinearities are mentioned. We proceed to the core switching process that includes the creation, annihilation, and fusion of vortices and their topological counterpart the antivortex. Harmonic and pulsed excitations with fields and currents are discussed as well as the interaction of coupled vortices, where a vortex can be considered as a building block, for linear chains, vortex molecules and magnonic vortex crystals. The chapter concludes with current perspectives and challenges in the field of magnetic vortices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The word ’vortex’ addresses the magnetization of the ’vortex core’ with its out-of-plane component at the center pointing either up or down plus the surrounding magnetization curling in the plane either clockwise or counter-clockwise. We will try to be as precise as possible to distinguish the ’vortex core’ from the ’vortex’ as well as from the magnetization of a ’vortex state’ within a microdisk or a microsquare, where the latter case even includes four domains and four domain walls. For the sake of readability we will nonetheless sometimes just write vortex to denote one of the three entities, which should then be clear from the context

  2. 2.

    Figure 3.12 and parts of the text in this subchapter are reproduced from the Dissertation Thesis of C. F. Adolff [78].

  3. 3.

    Figures 3.19, 3.20 and 3.21 and parts of the text in this subchapter are reproduced from the Dissertation Thesis of C. F. Adolff [78].

  4. 4.

    Note that only 136 polarization states are non-degenerate with respect to the frequency response (absorption) due to symmetry reasons.

References

  1. I. Newton, Philosophiae Naturalis Principia Mathematica (Royal Society, London, 1687)

    Google Scholar 

  2. G.-G. Coriolis, J. de l’Ecole, R. Polytech. 15, 144 (1835)

    Google Scholar 

  3. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  4. A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8, 152 (2013)

    Article  ADS  Google Scholar 

  5. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  6. O.A. Tretiakov, O. Tchernyshyov, Phys. Rev. B 75, 012408 (2007)

    Article  ADS  Google Scholar 

  7. I.E.J. Dzyaloshinskii, Phys. Chem. Sol. 4, 241 (1958)

    Article  ADS  Google Scholar 

  8. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  9. E.E. Huber, D.O. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)

    Article  ADS  Google Scholar 

  10. S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)

    Article  ADS  Google Scholar 

  11. W. Döring, J. Appl. Phys. 39, 1006 (1968)

    Article  ADS  Google Scholar 

  12. R. Feldtkeller, Z. Angew, Phys. 19, 530 (1965)

    Google Scholar 

  13. A. Hubert, R. Schäfer, Magnetic Domains—The Analysis of Magnetic Microstructures (Springer, Berlin, Heidelberg, 1998)

    Google Scholar 

  14. M. Pues, Dissertation, University of Hamburg (2015)

    Google Scholar 

  15. G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, P. Fischer, Phys. Rev. Lett. 98, 187202 (2007)

    Article  ADS  Google Scholar 

  16. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Science 289, 930 (2000)

    Article  ADS  Google Scholar 

  17. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger, Science 298, 577 (2002)

    Article  ADS  Google Scholar 

  18. M. Martens, T. Kamionka, A. Drews, B. Krüger, G. Meier, J. Appl. Phys. 112, 013917 (2012)

    Article  ADS  Google Scholar 

  19. J. Stöhr, H.C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Berlin, Heidelberg, 2006)

    Google Scholar 

  20. T. Kamionka, M. Martens, K.W. Chou, M. Curcic, A. Drews, G. Schütz, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. Lett. 105, 137204 (2010)

    Article  ADS  Google Scholar 

  21. M. Pues, M. Martens, T. Kamionka, G. Meier, Appl. Phys. Lett. 100, 162404 (2012)

    Article  ADS  Google Scholar 

  22. A. Haldar, K.S. Buchanan, Appl. Phys. Lett. 102, 112401 (2013)

    Article  ADS  Google Scholar 

  23. K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, T. Ono, Appl. Phys. Lett. 80, 4190 (2002)

    Article  ADS  Google Scholar 

  24. K. Kuepper, M. Buess, J. Raabe, C. Quitmann, J. Fassbender, Phys. Rev. Lett. 99, 167202 (2007)

    Article  ADS  Google Scholar 

  25. M.-Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, T. Ono, Nat. Commun. 3, 983 (2012)

    Article  Google Scholar 

  26. M.-Y. Im, K.-S. Lee, A. Vogel, J.-I. Hong, G. Meier, P. Fischer, Nat. Commun. 5, 5620 (2014)

    Article  Google Scholar 

  27. V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, M.-Y. Im, P. Fischer, N. Eibagi, J.J. Kan, E.E. Fullerton, T. Šikola, Nat. Nanotech. 8, 341 (2013)

    Article  ADS  Google Scholar 

  28. M.-Y. Im, P. Fischer, H.-S. Han, A. Vogel, M.-S. Jung, W. Chao, Y.-S. Yu, G. Meier, J.-I. Hong, K.-S. Lee, NPG Asia Mater. 9, e348 (2017)

    Article  Google Scholar 

  29. T. Kamionka, Dissertation, University of Hamburg (2012)

    Google Scholar 

  30. S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Science 304, 420 (2004)

    Article  ADS  Google Scholar 

  31. B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. B 76, 224426 (2007)

    Article  ADS  Google Scholar 

  32. R. Lebrun, A. Jenkins, A. Dussaux, N. Locatelli, S. Tsunegi, E. Grimaldi, H. Kubota, P. Bortolotti, K. Yakushiji, J. Grollier, A. Fukushima, S. Yuasa, V. Cros, Phys. Rev. Lett. 115, 017201 (2015)

    Article  ADS  Google Scholar 

  33. S. Tsunegi, E. Grimaldi, R. Lebrun, H. Kubota, A.S. Jenkins, K. Yakushiji, A. Fukushima, P. Bortolotti, J. Grollier, S. Yuasa, V. Cros, Sci. Rep. 6, 26849 (2016)

    Article  ADS  Google Scholar 

  34. S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008)

    Article  ADS  Google Scholar 

  35. A. Drews, B. Krüger, G. Meier, S. Bohlens, L. Bocklage, T. Matsuyama, M. Bolte, Appl. Phys. Lett. 94, 062504 (2009)

    Article  ADS  Google Scholar 

  36. B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz, Nature 444, 461 (2006)

    Article  ADS  Google Scholar 

  37. M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C.H. Back, G. Schüetz, Nat. Commun. 2, 279 (2011)

    Google Scholar 

  38. M. Kammerer, H. Stoll, M. Noske, M. Sproll, M. Weigand, C. Illg, G. Woltersdorf, M. Fähnle, C. Back, G. Schütz, Phys. Rev. B 86, 134426 (2012)

    Article  ADS  Google Scholar 

  39. S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A. Erbe, A. Slavin, J. Fassbender, Nat. Nanotechnol. 11, 948 (2016)

    Article  ADS  Google Scholar 

  40. J. Shibata, K. Shigeto, Y. Otani, Phys. Rev. B 67, 224404 (2003)

    Article  ADS  Google Scholar 

  41. K.Y. Guslienko, K.S. Buchanan, S.D. Bader, V. Novosad, Appl. Phys. Lett. 86, 223112 (2005)

    Article  ADS  Google Scholar 

  42. A. Vogel, T. Kamionka, M. Martens, A. Drews, K.W. Chou, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. Lett. 106, 137201 (2011)

    Article  ADS  Google Scholar 

  43. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107 (2011)

    Article  ADS  Google Scholar 

  44. M. Krawczyk, D. Grundler, J. Phys. Condens. Matter 26, 123202 (2014)

    Article  Google Scholar 

  45. J. Mejía-López, D. Altbir, A.H. Romero, X. Batlle, I.V. Roshchin, C.-P. Li, I.K. Schuller, J. Appl. Phys. 100, 104319 (2006)

    Article  ADS  Google Scholar 

  46. R. Fontana, G. Decad, IBM Systems and Technology Group, Presentation (2014)

    Google Scholar 

  47. M. Hänze, C.F. Adolff, S. Velten, M. Weigand, G. Meier, Phys. Rev. B 93, 054411 (2016)

    Article  ADS  Google Scholar 

  48. M. Hänze, C.F. Adolff, B. Schulte, J. Möller, M. Weigand, G. Meier, Sci. Rep. 6, 22402 (2016)

    Article  ADS  Google Scholar 

  49. D.-H. Kim, E.A. Rozhkova, I.V. Ulasov, S.D. Bader, T. Rajh, M.S. Lesniak, V. Novosad, Nat. Mater. 9, 165 (2009)

    Article  ADS  Google Scholar 

  50. J. Zimmer, A. Satz, W. Raberg, H. Brueckl, D. Suess, United States Patent Application Publication, US 2015/0185297 A1 (2015)

    Google Scholar 

  51. J. Torrejon, M. Riou, F. Abreu Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier, Nature 547, 428 (2017)

    Article  Google Scholar 

  52. M. Romera, P. Talatchian, S. Tsunegi, F. Abreu Araujo, V. Cros, P. Bortolotti, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, D. Vodenicarevic, N. Locatelli, D. Querlioz, J. Grollier (2017). arXiv:1711.02704

  53. W.F. Brown, J. Appl. Phys. 30, 62 (1959)

    Article  ADS  Google Scholar 

  54. D. Goll, G. Schütz, H. Kronmüller, Phys. Rev. B 67, 094414 (2003)

    Article  ADS  Google Scholar 

  55. Y. Nakatani, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 290, 750 (2005)

    Article  ADS  Google Scholar 

  56. H. Kronmüller, Z. Phys. 168, 478 (1962)

    Article  ADS  Google Scholar 

  57. K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001)

    Article  ADS  Google Scholar 

  58. T. Kamionka, M. Martens, K.W. Chou, A. Drews, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. B 83, 224422 (2011)

    Article  ADS  Google Scholar 

  59. A. Drews, B. Krüger, M. Bolte, G. Meier, Phys. Rev. B 77, 094413 (2008)

    Article  ADS  Google Scholar 

  60. M. Pues, M. Martens, G. Meier, J. Appl. Phys. 116, 153903 (2014)

    Article  ADS  Google Scholar 

  61. A. Vogel, A. Drews, T. Kamionka, M. Bolte, G. Meier, Phys. Rev. Lett. 105, 037201 (2010)

    Article  ADS  Google Scholar 

  62. L. Breitenstein, P. Lendecke, S. Bohlens, G. Meier, U. Merkt, J. Appl. Phys. 104, 083909 (2008)

    Article  ADS  Google Scholar 

  63. G. Mihajlović, M.S. Patrick, J.E. Pearson, V. Novosad, S.D. Bader, M. Field, G.J. Sullivan, A. Hoffmann, Appl. Phys. Lett. 96, 112501 (2010)

    Article  ADS  Google Scholar 

  64. E. Östman, U.B. Arnalds, E. Melander, V. Kapaklis, G.K. Pálsson, A.Y. Saw, M.A. Verschuuren, F. Kronast, E.T. Papaioannou, C.S. Fadley, B. Hjörvarsson, New J. Phys. 16, 053002 (2014)

    Article  ADS  Google Scholar 

  65. K.Y. Guslienko, B.A. Ivanov, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, J. Appl. Phys. 91, 8037 (2002)

    Article  ADS  Google Scholar 

  66. R.L. Compton, P.A. Crowell, Phys. Rev. Lett. 97, 137202 (2006)

    Article  ADS  Google Scholar 

  67. R.L. Compton, T.Y. Chen, P.A. Crowell, Phys. Rev. B 81, 144412 (2010)

    Article  ADS  Google Scholar 

  68. T. Kamionka, M. Martens, A. Drews, B. Krüger, O. Albrecht, G. Meier, Phys. Rev. B 83, 224424 (2011)

    Article  ADS  Google Scholar 

  69. L.D. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  70. T. L. Gilbert, Dissertation, Illinois Institute of Technology, 1956

    Google Scholar 

  71. T.L. Gilbert, I.E.E.E. Trans, IEEE Trans. Magn. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  72. MICROMAGNUM, http://micromagnum.informatik.uni-hamburg.de

  73. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  Google Scholar 

  74. K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Phys. Rev. B 65, 024414 (2001)

    Article  ADS  Google Scholar 

  75. M. Martens, T. Kamionka, M. Weigand, H. Stoll, T. Tyliszczak, G. Meier, Phys. Rev. B 87, 054426 (2013)

    Article  ADS  Google Scholar 

  76. C.F. Adolff, Dissertation, Verlag Dr. Hut (2016)

    Google Scholar 

  77. B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, J. Appl. Phys. 103, 07A501 (2008)

    Article  Google Scholar 

  78. C.F. Adolff, Dissertation, University of Hamburg (2015)

    Google Scholar 

  79. A. Drews, B. Krüger, G. Selke, T. Kamionka, A. Vogel, M. Martens, U. Merkt, D. Möller, G. Meier, Phys. Rev. B 85, 144417 (2012)

    Article  ADS  Google Scholar 

  80. O.V. Sukhostavets, B. Pigeau, S. Sangiao, G. de Loubens, V.V. Naletov, O. Klein, K. Mitsuzuka, S. Andrieu, F. Montaigne, K.Y. Guslienko, Phys. Rev. Lett. 111, 247601 (2013)

    Google Scholar 

  81. H.H. Langner, T. Kamionka, M. Martens, M. Weigand, C.F. Adolff, U. Merkt, G. Meier, Phys. Rev. B 85, 174436 (2012)

    Article  ADS  Google Scholar 

  82. K.L. Liu, K. Young, J. Math. Phys. 27, 502 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  83. R. Hertel, C.M. Schneider, Phys. Rev. Lett. 97, 177202 (2006)

    Article  ADS  Google Scholar 

  84. K.Y. Guslienko, K.-S. Lee, S.-K. Kim, Phys. Rev. Lett. 100, 027203 (2008)

    Article  ADS  Google Scholar 

  85. Y.-S. Yu, K.-S. Lee, H. Jung, Y.-S. Choi, M.-W. Yoo, D.-S. Han, M.-Y. Im, P. Fischer, S.-K. Kim, Phys. Rev. B 83, 174429 (2011)

    Article  ADS  Google Scholar 

  86. Q.F. Xiao, J. Rudge, B.C. Choi, Y.K. Hong, G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006)

    Article  ADS  Google Scholar 

  87. R. Hertel, S. Gliga, M. Fähnle, C.M. Schneider, Phys. Rev. Lett. 98, 117201 (2007)

    Article  ADS  Google Scholar 

  88. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, T. Ono, Nat. Mater. 6, 270 (2007)

    Article  ADS  Google Scholar 

  89. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, T. Ono, Appl. Phys. Lett. 93, 152502 (2008)

    Article  ADS  Google Scholar 

  90. M. Curcic, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand, V. Sackmann, H. Stoll, M. Fähnle, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, Phys. Rev. Lett. 101, 197204 (2008)

    Article  ADS  Google Scholar 

  91. M. Curcic, H. Stoll, M. Weigand, V. Sackmann, P. Jüllig, M. Kammerer, M. Noske, M. Sproll, B. Van Waeyenberge, A. Vansteenkiste, G. Woltersdorf, T. Tyliszczak, G. Schütz, Phys. Status Solidi B 248, 2317 (2011)

    Article  ADS  Google Scholar 

  92. M. Weigand, B. Van Waeyenberge, A. Vansteenkiste, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, K. Kaznatcheev, D. Bertwistle, G. Woltersdorf, C.H. Back, G. Schütz, Phys. Rev. Lett. 102, 077201 (2009)

    Article  ADS  Google Scholar 

  93. V.P. Kravchuk, D.D. Sheka, Y.B. Gaididei, F.G. Mertens, J. Appl. Phys. 102, 043908 (2007)

    Article  ADS  Google Scholar 

  94. A. Vansteenkiste, K.W. Chou, M. Weigand, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, B. Van Waeyenberge, Nat. Phys. 5, 332 (2009)

    Article  Google Scholar 

  95. S.-K. Kim, K.-S. Lee, Y.-S. Yu, Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008)

    Article  ADS  Google Scholar 

  96. K.-S. Lee, S.-K. Kim, Y.-S. Yu, Y.-S. Choi, K.Y. Guslienko, H. Jung, P. Fischer, Phys. Rev. Lett. 101, 267206 (2008)

    Article  ADS  Google Scholar 

  97. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, T. Ono, Appl. Phys. Lett. 96, 192508 (2010)

    Article  ADS  Google Scholar 

  98. M. Hänze, Dissertation, University of Hamburg (2016)

    Google Scholar 

  99. A. Vogel, M. Martens, M. Weigand, G. Meier, Appl. Phys. Lett. 99, 042506 (2011)

    Article  ADS  Google Scholar 

  100. H. Jung, K.-S. Lee, D.-E. Jeong, Y.-S. Choi, Y.-S. Yu, D.-S. Han, A. Vogel, L. Bocklage, G. Meier, M.-Y. Im, P. Fischer, S.-K. Kim, Sci. Rep. 1, 59 (2011)

    Article  Google Scholar 

  101. S. Barman, A. Barman, Y. Otani, I.E.E.E. Trans, IEEE Trans. Magn. 46, 1342 (2010)

    Article  ADS  Google Scholar 

  102. A. Barman, S. Barman, T. Kimura, Y. Fukuma, Y. Otani, J. Phys. D: Appl. Phys. 43, 422001 (2010)

    Article  ADS  Google Scholar 

  103. S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, Y. Otani, Phys. Rev. Lett. 106, 197203 (2011)

    Article  ADS  Google Scholar 

  104. K.S. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Y. Guslienko, S.D. Bader, V. Novosad, Nat. Phys. 1, 172 (2005)

    Article  Google Scholar 

  105. A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, A. Fert, Nat. Nano. 4, 528 (2009)

    Article  Google Scholar 

  106. S. Jain, V. Novosad, F.Y. Fradin, J.E. Pearson, V. Tiberkevich, A.N. Slavin, S.D. Bader, Nat. Comm. 3, 1330 (2012)

    Article  ADS  Google Scholar 

  107. N. Locatelli, A. Hamadeh, F. Abreu Araujo, A.D. Belanovsky, P.N. Skirdkov, R. Lebrun, V.V. Naletov, K.A. Zvezdin, M. Muñoz, J. Grollier, O. Klein, V. Cros, G. de Loubens, Sci. Rep. 5, 17039 (2015)

    Article  ADS  Google Scholar 

  108. R. Lebrun, S. Tsunegi, P. Bortolotti, H. Kubota, A.S. Jenkins, M. Romera, K. Yakushiji, A. Fukushima, J. Grollier, S. Yuasa, V. Cros, Nat. Commun. 8, 15825 (2017)

    Article  ADS  Google Scholar 

  109. S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems, 5th edn. (Thomson, 2004)

    Google Scholar 

  110. S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, J. Fassbender, Phys. Rev. Lett. 110, 177201 (2013)

    Article  ADS  Google Scholar 

  111. M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Phys. Rev. B 91, 104428 (2015)

    Article  ADS  Google Scholar 

  112. M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Appl. Phys. Lett. 104, 182405 (2014)

    Article  ADS  Google Scholar 

  113. C. Behncke, M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Phys. Rev. B 91, 224417 (2015)

    Article  ADS  Google Scholar 

  114. C.F. Adolff, M. Hänze, A. Vogel, M. Weigand, M. Martens, G. Meier, Phys. Rev. B 88, 224425 (2013)

    Article  ADS  Google Scholar 

  115. H. Stoll, M. Noske, M. Weigand, K. Richter, B. Krüger, R.M. Reeve, M. Hänze, C.F. Adolff, F.-U. Stein, G. Meier, M. Kläui, G. Schütz, Front. Phys. 3, 26 (2015)

    Article  Google Scholar 

  116. J. Shibata, Y. Otani, Phys. Rev. B 70, 012404 (2004)

    Article  ADS  Google Scholar 

  117. C.F. Adolff, M. Hänze, M. Pues, M. Weigand, G. Meier, Phys. Rev. B 92, 024426 (2015)

    Article  ADS  Google Scholar 

  118. E. Wigner, Math.-Phys. 1, 133 (1930)

    Google Scholar 

  119. E.B. Wilson, Phys. Rev. 45, 706 (1934)

    Article  ADS  Google Scholar 

  120. V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010)

    Article  ADS  Google Scholar 

  121. A.Y. Galkin, B.A. Ivanov, C.E. Zaspel, Phys. Rev. B 74, 144419 (2006)

    Article  ADS  Google Scholar 

  122. C. Behncke, C. F. Adolff, S. Wintz, M. Hänze, B. Schulte, M. Weigand, S. Finizio, J. Raabe, G. Meier, Sci. Rep. 8, 186 (2018)

    Google Scholar 

  123. A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D: Appl. Phys. 43, 264002 (2010)

    Article  ADS  Google Scholar 

  124. T. Tanigaki, Y. Takahashi, T. Shimakura, T. Akashi, R. Tsuneta, A. Sugawara, D. Shindo, Nano Lett. 15, 1309 (2015)

    Article  ADS  Google Scholar 

  125. M. Hänze, B. Schulte, C.F. Adolff, C. Behncke, M. Weigand, and G. Meier, in preparation

    Google Scholar 

  126. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Science 336, 555 (2012)

    Article  ADS  Google Scholar 

  127. A.S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, V. Cros, Nat. Nano. 11, 360 (2016)

    Article  Google Scholar 

  128. D.S. Han, A. Vogel, H. Jung, K.-S. Lee, M. Weigand, H. Stoll, G. Schütz, P. Fischer, G. Meier, S.-K. Kim, Sci. Rep. 3, 2262 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ulrich Merkt for continuous support and fruitful discussions over many years. This chapter wouldn’t have been possible without the contributions from Markus Bolte, André Drews, Max Hänze, Thomas Kamionka, Peter Lendecke, Michael Martens, Matthias Pues, Falk-Ulrich Stein, and Andreas Vogel. G.M. acknowledges support and new insights provided by Andrea Cavalleri. We acknowledge financial support from the Deutsche Forschungsgemeinschaft via SFB 668 ‘Magnetism from the Single Atom to the Nanostructure’, via Graduiertenkolleg 1286 ‘Functional Metal-Semiconductor Hybrid Systems’, and via excellence cluster ‘The Hamburg Centre for Ultrafast Imaging—Structure, Dynamics and Control of Matter on the Atomic Scale’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Behncke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behncke, C., Adolff, C.F., Meier, G. (2018). Magnetic Vortices. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_3

Download citation

Publish with us

Policies and ethics