Advertisement

Magnetic Vortices

  • Carolin BehnckeEmail author
  • Christian F. Adolff
  • Guido Meier
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 192)

Abstract

Magnetic vortices are topological objects found in magnetic thin films and microstructures. The study of vortices has attracted much attention for their fundamental beauty and because vortices could be constituents of non-volatile storage and sensing devices as well as of radiofrequency and neuro-inspired devices. Many important experimental, theoretical, and simulational contributions have been made to understand the intricate details of the statics and dynamics of magnetic vortices. In this chapter we start from first experimental observations and proceed to the occurence of vortices, their static properties as well as their topology. The polarization of vortex cores and the circularity of their in-plane magnetization are introduced. The minimization of micromagnetic energy contributions that lead to an out-of-plane core region and an in-plane circulation of magnetization are discussed, along with geometries for confinement and their response in static external magnetic fields. We analyze stray fields in the vicinity of a vortex, their hysteresis as well as their thermal stability before we address dynamic properties. The relation between handedness and sense of gyration are described and the harmonic oscillator model for small excitations is introduced. Then modifications of the oscillator model for strong excitations including nonlinearities are mentioned. We proceed to the core switching process that includes the creation, annihilation, and fusion of vortices and their topological counterpart the antivortex. Harmonic and pulsed excitations with fields and currents are discussed as well as the interaction of coupled vortices, where a vortex can be considered as a building block, for linear chains, vortex molecules and magnonic vortex crystals. The chapter concludes with current perspectives and challenges in the field of magnetic vortices.

Notes

Acknowledgements

We are grateful to Ulrich Merkt for continuous support and fruitful discussions over many years. This chapter wouldn’t have been possible without the contributions from Markus Bolte, André Drews, Max Hänze, Thomas Kamionka, Peter Lendecke, Michael Martens, Matthias Pues, Falk-Ulrich Stein, and Andreas Vogel. G.M. acknowledges support and new insights provided by Andrea Cavalleri. We acknowledge financial support from the Deutsche Forschungsgemeinschaft via SFB 668 ‘Magnetism from the Single Atom to the Nanostructure’, via Graduiertenkolleg 1286 ‘Functional Metal-Semiconductor Hybrid Systems’, and via excellence cluster ‘The Hamburg Centre for Ultrafast Imaging—Structure, Dynamics and Control of Matter on the Atomic Scale’.

References

  1. 1.
    I. Newton, Philosophiae Naturalis Principia Mathematica (Royal Society, London, 1687)Google Scholar
  2. 2.
    G.-G. Coriolis, J. de l’Ecole, R. Polytech. 15, 144 (1835)Google Scholar
  3. 3.
    T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8, 152 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    O.A. Tretiakov, O. Tchernyshyov, Phys. Rev. B 75, 012408 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    I.E.J. Dzyaloshinskii, Phys. Chem. Sol. 4, 241 (1958)ADSCrossRefGoogle Scholar
  8. 8.
    T. Moriya, Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar
  9. 9.
    E.E. Huber, D.O. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)ADSCrossRefGoogle Scholar
  10. 10.
    S. Middelhoek, J. Appl. Phys. 34, 1054 (1963)ADSCrossRefGoogle Scholar
  11. 11.
    W. Döring, J. Appl. Phys. 39, 1006 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    R. Feldtkeller, Z. Angew, Phys. 19, 530 (1965)Google Scholar
  13. 13.
    A. Hubert, R. Schäfer, Magnetic Domains—The Analysis of Magnetic Microstructures (Springer, Berlin, Heidelberg, 1998)Google Scholar
  14. 14.
    M. Pues, Dissertation, University of Hamburg (2015)Google Scholar
  15. 15.
    G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, P. Fischer, Phys. Rev. Lett. 98, 187202 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Science 289, 930 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger, Science 298, 577 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    M. Martens, T. Kamionka, A. Drews, B. Krüger, G. Meier, J. Appl. Phys. 112, 013917 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J. Stöhr, H.C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Berlin, Heidelberg, 2006)Google Scholar
  20. 20.
    T. Kamionka, M. Martens, K.W. Chou, M. Curcic, A. Drews, G. Schütz, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. Lett. 105, 137204 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Pues, M. Martens, T. Kamionka, G. Meier, Appl. Phys. Lett. 100, 162404 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Haldar, K.S. Buchanan, Appl. Phys. Lett. 102, 112401 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, T. Ono, Appl. Phys. Lett. 80, 4190 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    K. Kuepper, M. Buess, J. Raabe, C. Quitmann, J. Fassbender, Phys. Rev. Lett. 99, 167202 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M.-Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, T. Ono, Nat. Commun. 3, 983 (2012)CrossRefGoogle Scholar
  26. 26.
    M.-Y. Im, K.-S. Lee, A. Vogel, J.-I. Hong, G. Meier, P. Fischer, Nat. Commun. 5, 5620 (2014)CrossRefGoogle Scholar
  27. 27.
    V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, M.-Y. Im, P. Fischer, N. Eibagi, J.J. Kan, E.E. Fullerton, T. Šikola, Nat. Nanotech. 8, 341 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M.-Y. Im, P. Fischer, H.-S. Han, A. Vogel, M.-S. Jung, W. Chao, Y.-S. Yu, G. Meier, J.-I. Hong, K.-S. Lee, NPG Asia Mater. 9, e348 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Kamionka, Dissertation, University of Hamburg (2012)Google Scholar
  30. 30.
    S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Science 304, 420 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. B 76, 224426 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R. Lebrun, A. Jenkins, A. Dussaux, N. Locatelli, S. Tsunegi, E. Grimaldi, H. Kubota, P. Bortolotti, K. Yakushiji, J. Grollier, A. Fukushima, S. Yuasa, V. Cros, Phys. Rev. Lett. 115, 017201 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    S. Tsunegi, E. Grimaldi, R. Lebrun, H. Kubota, A.S. Jenkins, K. Yakushiji, A. Fukushima, P. Bortolotti, J. Grollier, S. Yuasa, V. Cros, Sci. Rep. 6, 26849 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    A. Drews, B. Krüger, G. Meier, S. Bohlens, L. Bocklage, T. Matsuyama, M. Bolte, Appl. Phys. Lett. 94, 062504 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz, Nature 444, 461 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C.H. Back, G. Schüetz, Nat. Commun. 2, 279 (2011)Google Scholar
  38. 38.
    M. Kammerer, H. Stoll, M. Noske, M. Sproll, M. Weigand, C. Illg, G. Woltersdorf, M. Fähnle, C. Back, G. Schütz, Phys. Rev. B 86, 134426 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A. Erbe, A. Slavin, J. Fassbender, Nat. Nanotechnol. 11, 948 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J. Shibata, K. Shigeto, Y. Otani, Phys. Rev. B 67, 224404 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    K.Y. Guslienko, K.S. Buchanan, S.D. Bader, V. Novosad, Appl. Phys. Lett. 86, 223112 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    A. Vogel, T. Kamionka, M. Martens, A. Drews, K.W. Chou, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. Lett. 106, 137201 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    M. Krawczyk, D. Grundler, J. Phys. Condens. Matter 26, 123202 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Mejía-López, D. Altbir, A.H. Romero, X. Batlle, I.V. Roshchin, C.-P. Li, I.K. Schuller, J. Appl. Phys. 100, 104319 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    R. Fontana, G. Decad, IBM Systems and Technology Group, Presentation (2014)Google Scholar
  47. 47.
    M. Hänze, C.F. Adolff, S. Velten, M. Weigand, G. Meier, Phys. Rev. B 93, 054411 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    M. Hänze, C.F. Adolff, B. Schulte, J. Möller, M. Weigand, G. Meier, Sci. Rep. 6, 22402 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    D.-H. Kim, E.A. Rozhkova, I.V. Ulasov, S.D. Bader, T. Rajh, M.S. Lesniak, V. Novosad, Nat. Mater. 9, 165 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    J. Zimmer, A. Satz, W. Raberg, H. Brueckl, D. Suess, United States Patent Application Publication, US 2015/0185297 A1 (2015)Google Scholar
  51. 51.
    J. Torrejon, M. Riou, F. Abreu Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier, Nature 547, 428 (2017)CrossRefGoogle Scholar
  52. 52.
    M. Romera, P. Talatchian, S. Tsunegi, F. Abreu Araujo, V. Cros, P. Bortolotti, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, D. Vodenicarevic, N. Locatelli, D. Querlioz, J. Grollier (2017). arXiv:1711.02704
  53. 53.
    W.F. Brown, J. Appl. Phys. 30, 62 (1959)ADSCrossRefGoogle Scholar
  54. 54.
    D. Goll, G. Schütz, H. Kronmüller, Phys. Rev. B 67, 094414 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Nakatani, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 290, 750 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    H. Kronmüller, Z. Phys. 168, 478 (1962)ADSCrossRefGoogle Scholar
  57. 57.
    K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    T. Kamionka, M. Martens, K.W. Chou, A. Drews, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. B 83, 224422 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    A. Drews, B. Krüger, M. Bolte, G. Meier, Phys. Rev. B 77, 094413 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    M. Pues, M. Martens, G. Meier, J. Appl. Phys. 116, 153903 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    A. Vogel, A. Drews, T. Kamionka, M. Bolte, G. Meier, Phys. Rev. Lett. 105, 037201 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    L. Breitenstein, P. Lendecke, S. Bohlens, G. Meier, U. Merkt, J. Appl. Phys. 104, 083909 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    G. Mihajlović, M.S. Patrick, J.E. Pearson, V. Novosad, S.D. Bader, M. Field, G.J. Sullivan, A. Hoffmann, Appl. Phys. Lett. 96, 112501 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    E. Östman, U.B. Arnalds, E. Melander, V. Kapaklis, G.K. Pálsson, A.Y. Saw, M.A. Verschuuren, F. Kronast, E.T. Papaioannou, C.S. Fadley, B. Hjörvarsson, New J. Phys. 16, 053002 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    K.Y. Guslienko, B.A. Ivanov, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, J. Appl. Phys. 91, 8037 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    R.L. Compton, P.A. Crowell, Phys. Rev. Lett. 97, 137202 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    R.L. Compton, T.Y. Chen, P.A. Crowell, Phys. Rev. B 81, 144412 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    T. Kamionka, M. Martens, A. Drews, B. Krüger, O. Albrecht, G. Meier, Phys. Rev. B 83, 224424 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    L.D. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)Google Scholar
  70. 70.
    T. L. Gilbert, Dissertation, Illinois Institute of Technology, 1956Google Scholar
  71. 71.
    T.L. Gilbert, I.E.E.E. Trans, IEEE Trans. Magn. 40, 3443 (2004)ADSCrossRefGoogle Scholar
  72. 72.
  73. 73.
    A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)ADSCrossRefGoogle Scholar
  74. 74.
    K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Phys. Rev. B 65, 024414 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    M. Martens, T. Kamionka, M. Weigand, H. Stoll, T. Tyliszczak, G. Meier, Phys. Rev. B 87, 054426 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    C.F. Adolff, Dissertation, Verlag Dr. Hut (2016)Google Scholar
  77. 77.
    B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, J. Appl. Phys. 103, 07A501 (2008)CrossRefGoogle Scholar
  78. 78.
    C.F. Adolff, Dissertation, University of Hamburg (2015)Google Scholar
  79. 79.
    A. Drews, B. Krüger, G. Selke, T. Kamionka, A. Vogel, M. Martens, U. Merkt, D. Möller, G. Meier, Phys. Rev. B 85, 144417 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    O.V. Sukhostavets, B. Pigeau, S. Sangiao, G. de Loubens, V.V. Naletov, O. Klein, K. Mitsuzuka, S. Andrieu, F. Montaigne, K.Y. Guslienko, Phys. Rev. Lett. 111, 247601 (2013)Google Scholar
  81. 81.
    H.H. Langner, T. Kamionka, M. Martens, M. Weigand, C.F. Adolff, U. Merkt, G. Meier, Phys. Rev. B 85, 174436 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    K.L. Liu, K. Young, J. Math. Phys. 27, 502 (1986)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    R. Hertel, C.M. Schneider, Phys. Rev. Lett. 97, 177202 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    K.Y. Guslienko, K.-S. Lee, S.-K. Kim, Phys. Rev. Lett. 100, 027203 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    Y.-S. Yu, K.-S. Lee, H. Jung, Y.-S. Choi, M.-W. Yoo, D.-S. Han, M.-Y. Im, P. Fischer, S.-K. Kim, Phys. Rev. B 83, 174429 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    Q.F. Xiao, J. Rudge, B.C. Choi, Y.K. Hong, G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    R. Hertel, S. Gliga, M. Fähnle, C.M. Schneider, Phys. Rev. Lett. 98, 117201 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, T. Ono, Nat. Mater. 6, 270 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, T. Ono, Appl. Phys. Lett. 93, 152502 (2008)ADSCrossRefGoogle Scholar
  90. 90.
    M. Curcic, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand, V. Sackmann, H. Stoll, M. Fähnle, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, Phys. Rev. Lett. 101, 197204 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    M. Curcic, H. Stoll, M. Weigand, V. Sackmann, P. Jüllig, M. Kammerer, M. Noske, M. Sproll, B. Van Waeyenberge, A. Vansteenkiste, G. Woltersdorf, T. Tyliszczak, G. Schütz, Phys. Status Solidi B 248, 2317 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    M. Weigand, B. Van Waeyenberge, A. Vansteenkiste, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, K. Kaznatcheev, D. Bertwistle, G. Woltersdorf, C.H. Back, G. Schütz, Phys. Rev. Lett. 102, 077201 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    V.P. Kravchuk, D.D. Sheka, Y.B. Gaididei, F.G. Mertens, J. Appl. Phys. 102, 043908 (2007)ADSCrossRefGoogle Scholar
  94. 94.
    A. Vansteenkiste, K.W. Chou, M. Weigand, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, B. Van Waeyenberge, Nat. Phys. 5, 332 (2009)CrossRefGoogle Scholar
  95. 95.
    S.-K. Kim, K.-S. Lee, Y.-S. Yu, Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    K.-S. Lee, S.-K. Kim, Y.-S. Yu, Y.-S. Choi, K.Y. Guslienko, H. Jung, P. Fischer, Phys. Rev. Lett. 101, 267206 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, T. Ono, Appl. Phys. Lett. 96, 192508 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    M. Hänze, Dissertation, University of Hamburg (2016)Google Scholar
  99. 99.
    A. Vogel, M. Martens, M. Weigand, G. Meier, Appl. Phys. Lett. 99, 042506 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    H. Jung, K.-S. Lee, D.-E. Jeong, Y.-S. Choi, Y.-S. Yu, D.-S. Han, A. Vogel, L. Bocklage, G. Meier, M.-Y. Im, P. Fischer, S.-K. Kim, Sci. Rep. 1, 59 (2011)CrossRefGoogle Scholar
  101. 101.
    S. Barman, A. Barman, Y. Otani, I.E.E.E. Trans, IEEE Trans. Magn. 46, 1342 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    A. Barman, S. Barman, T. Kimura, Y. Fukuma, Y. Otani, J. Phys. D: Appl. Phys. 43, 422001 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, Y. Otani, Phys. Rev. Lett. 106, 197203 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    K.S. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Y. Guslienko, S.D. Bader, V. Novosad, Nat. Phys. 1, 172 (2005)CrossRefGoogle Scholar
  105. 105.
    A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, A. Fert, Nat. Nano. 4, 528 (2009)CrossRefGoogle Scholar
  106. 106.
    S. Jain, V. Novosad, F.Y. Fradin, J.E. Pearson, V. Tiberkevich, A.N. Slavin, S.D. Bader, Nat. Comm. 3, 1330 (2012)ADSCrossRefGoogle Scholar
  107. 107.
    N. Locatelli, A. Hamadeh, F. Abreu Araujo, A.D. Belanovsky, P.N. Skirdkov, R. Lebrun, V.V. Naletov, K.A. Zvezdin, M. Muñoz, J. Grollier, O. Klein, V. Cros, G. de Loubens, Sci. Rep. 5, 17039 (2015)ADSCrossRefGoogle Scholar
  108. 108.
    R. Lebrun, S. Tsunegi, P. Bortolotti, H. Kubota, A.S. Jenkins, M. Romera, K. Yakushiji, A. Fukushima, J. Grollier, S. Yuasa, V. Cros, Nat. Commun. 8, 15825 (2017)ADSCrossRefGoogle Scholar
  109. 109.
    S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems, 5th edn. (Thomson, 2004)Google Scholar
  110. 110.
    S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, J. Fassbender, Phys. Rev. Lett. 110, 177201 (2013)ADSCrossRefGoogle Scholar
  111. 111.
    M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Phys. Rev. B 91, 104428 (2015)ADSCrossRefGoogle Scholar
  112. 112.
    M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Appl. Phys. Lett. 104, 182405 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    C. Behncke, M. Hänze, C.F. Adolff, M. Weigand, G. Meier, Phys. Rev. B 91, 224417 (2015)ADSCrossRefGoogle Scholar
  114. 114.
    C.F. Adolff, M. Hänze, A. Vogel, M. Weigand, M. Martens, G. Meier, Phys. Rev. B 88, 224425 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    H. Stoll, M. Noske, M. Weigand, K. Richter, B. Krüger, R.M. Reeve, M. Hänze, C.F. Adolff, F.-U. Stein, G. Meier, M. Kläui, G. Schütz, Front. Phys. 3, 26 (2015)CrossRefGoogle Scholar
  116. 116.
    J. Shibata, Y. Otani, Phys. Rev. B 70, 012404 (2004)ADSCrossRefGoogle Scholar
  117. 117.
    C.F. Adolff, M. Hänze, M. Pues, M. Weigand, G. Meier, Phys. Rev. B 92, 024426 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    E. Wigner, Math.-Phys. 1, 133 (1930)Google Scholar
  119. 119.
    E.B. Wilson, Phys. Rev. 45, 706 (1934)ADSCrossRefGoogle Scholar
  120. 120.
    V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010)ADSCrossRefGoogle Scholar
  121. 121.
    A.Y. Galkin, B.A. Ivanov, C.E. Zaspel, Phys. Rev. B 74, 144419 (2006)ADSCrossRefGoogle Scholar
  122. 122.
    C. Behncke, C. F. Adolff, S. Wintz, M. Hänze, B. Schulte, M. Weigand, S. Finizio, J. Raabe, G. Meier, Sci. Rep. 8, 186 (2018)Google Scholar
  123. 123.
    A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D: Appl. Phys. 43, 264002 (2010)ADSCrossRefGoogle Scholar
  124. 124.
    T. Tanigaki, Y. Takahashi, T. Shimakura, T. Akashi, R. Tsuneta, A. Sugawara, D. Shindo, Nano Lett. 15, 1309 (2015)ADSCrossRefGoogle Scholar
  125. 125.
    M. Hänze, B. Schulte, C.F. Adolff, C. Behncke, M. Weigand, and G. Meier, in preparationGoogle Scholar
  126. 126.
    L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Science 336, 555 (2012)ADSCrossRefGoogle Scholar
  127. 127.
    A.S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, V. Cros, Nat. Nano. 11, 360 (2016)CrossRefGoogle Scholar
  128. 128.
    D.S. Han, A. Vogel, H. Jung, K.-S. Lee, M. Weigand, H. Stoll, G. Schütz, P. Fischer, G. Meier, S.-K. Kim, Sci. Rep. 3, 2262 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carolin Behncke
    • 1
    Email author
  • Christian F. Adolff
    • 1
  • Guido Meier
    • 2
  1. 1.Institut für Angewandte Physik und Zentrum für MikrostrukturforschungHamburgGermany
  2. 2.Max-Planck Institute for the Structure and Dynamics of MatterHamburgGermany

Personalised recommendations