Skip to main content

Magnons

  • Chapter
  • First Online:
Book cover Topology in Magnetism

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

Abstract

Spin waves and their quanta magnons are the dynamic eigen-excitations of a magnetic system. They provide the basis for the description of spatial and temporal evolution of the magnetization distribution of a magnetic object. The unique features of spin waves such as the possibility to carry spin information over relatively long distances, the possibility to achieve sub-micrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields make these waves uniquely suited for implementation of novel integrated electronic devices characterized by high speed, low power consumption, and extended functionalities. It is important to notice that contrary to photons and phonons magnons possess an anisotropic dispersion. The energy/frequency of a magnons depends not only on the absolute value of the wave vector of the magnon, but also on its angle relative to the orientation of the static magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Bloch, Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930)

    Article  ADS  MATH  Google Scholar 

  2. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  MATH  Google Scholar 

  3. F.J. Dyson, General theory of spin-wave interactions. Phys. Rev. 102, 1217 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Neusser, D. Grundler, Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009)

    Article  Google Scholar 

  5. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010)

    Article  ADS  Google Scholar 

  6. B. Lenk, H. Ulrichs, F. Garbs, M. Mnzenberg, The building blocks of magnonics. Phys. Rep. 507, 107 (2011)

    Article  ADS  Google Scholar 

  7. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453–461 (2015)

    Article  Google Scholar 

  8. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  9. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  10. J.C. Slonczewski, Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999)

    Article  ADS  Google Scholar 

  11. M.I. Dyakonov, V.I. Perel, Possibility of orienting electron spins with current. Sov. Phys. JETP Lett. 13, 467–469 (1971)

    ADS  Google Scholar 

  12. J.E. Hirsch, Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  Google Scholar 

  13. A. Hoffmann, Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013)

    Article  ADS  Google Scholar 

  14. Y. Kajiwara et al., Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010)

    Article  ADS  Google Scholar 

  15. Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, A. Slavin, Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011)

    Article  ADS  Google Scholar 

  16. V.E. Demidov, S. Urazhdin, A.B. Rinkevich, G. Reiss, S.O. Demokritov, Spin Hall controlled magnonic microwaveguides. Appl. Phys. Lett. 104, 152402 (2014)

    Article  ADS  Google Scholar 

  17. K. An et al., Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide. Phys. Rev. B 89, 140405(R) (2014)

    Article  ADS  Google Scholar 

  18. S. Urazhdin, V.E. Demidov, H. Ulrichs, T. Kendziorczyk, T. Kuhn, J. Leuthold, G. Wilde, S.O. Demokritov, Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotech. 9, 509–513 (2014)

    Article  ADS  Google Scholar 

  19. C. Kittel, Excitation of spin waves in a ferromagnet by uniform RF field. Phys. Rev. 110, 1295 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M.H. Seavey Jr., E. Tannenwald, Direct observation of spin wave resonance. Phys. Rev. Lett. 1, 168 (1958)

    Article  ADS  Google Scholar 

  21. R.W. Damon, J.R. Eshbach, Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961)

    Article  ADS  Google Scholar 

  22. P. Grunberg, F. Metawe, Light scattering from bulk and surface spin waves in EuO. Phys. Rev. Lett. 39, 1561 (1977)

    Article  ADS  Google Scholar 

  23. P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  24. C. Mathieu, J. Jorzick, A. Frank, S.O. Demokritov, A.N. Slavin, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambrill, Lateral quantization of spin waves in micron size magnetic wires. Phys. Rev. Lett. 81, 3968 (1998)

    Article  ADS  Google Scholar 

  25. J. Jorzick, S.O. Demokritov, B. Hillebrands, D. Berkov, N.L. Gorn, K. Guslienko, A.N. Slavin, Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett. 88, 047204 (2002)

    Article  ADS  Google Scholar 

  26. J. Park, D.M. Eames, J. Engebretson, A. Berezovsky, P. Crowell, Phys. Rev. Lett. 89, 277201 (2002)

    Article  ADS  Google Scholar 

  27. M. Tsoi et al., Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998)

    Article  ADS  Google Scholar 

  28. M. Tsoi, A.G.M. Jansen, J. Bass, W.C. Chiang, V. Tsoi, P. Wyder, Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46 (2000)

    Article  ADS  Google Scholar 

  29. S.I. Kiselev et al., Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  Google Scholar 

  30. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004)

    Article  ADS  Google Scholar 

  31. I.N. Krivorotov, N.C. Emley, J.C. Sankey, S.I. Kiselev, D.C. Ralph, R.A. Buhrman, Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228 (2005)

    Article  ADS  Google Scholar 

  32. V.E. Demidov, S. Urazhdin, S.O. Demokritov, Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984–988 (2010)

    Article  ADS  Google Scholar 

  33. V.E. Demidov et al., Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012)

    Article  ADS  Google Scholar 

  34. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006)

    Article  ADS  Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153 (1935)

    MATH  Google Scholar 

  36. C. Herring, C. Kittel, On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869 (1951)

    Article  ADS  MATH  Google Scholar 

  37. B.A. Kalinikos, A.N. Slavin, Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013 (1986)

    Article  ADS  Google Scholar 

  38. B. Heinrich, R. Urban, G. Woltersdorf, J. Appl. Phys. 91, 7523 (2002)

    Article  ADS  Google Scholar 

  39. W.K. Hiebert, A. Stankiewicz, M.R. Freeman, Phys. Rev. Lett. 79, 1134 (1997)

    Article  ADS  Google Scholar 

  40. A. Barman, V.V. Kruglyak, R.J. Hicken, J.M. Rowe, A. Kundrotaite, J. Scott, M. Rahman, Imaging the dephasing of spin wave modes in a square thin film magnetic element. Phys. Rev. B 69, 174426 (2004)

    Article  ADS  Google Scholar 

  41. Y. Acremann, C.H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, H. Melchior, Imaging precessional motion of the magnetization vector. Science 290, 492 (2000)

    Article  ADS  Google Scholar 

  42. S.O. Demokritov, B. Hillebrands, A.N. Slavin, Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441 (2001)

    Article  ADS  Google Scholar 

  43. S.O. Demokritov, V.E. Demidov, Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. Adv. Magn. 44, 6 (2008)

    Article  ADS  Google Scholar 

  44. V.E. Demidov, S.O. Demokritov, Magnonic waveguides studied by microfocus Brillouin light scattering. IEEE Trans. Magn. 51, 8578 (2015)

    Article  Google Scholar 

  45. B.T.M. Willis, C.J. Carlile, Experimental Neutron Scattering (Oxford University Press, Oxford, 2009)

    Google Scholar 

  46. J. Jersch, V.E. Demidov, H. Fuchs, K. Rott, P. Krzysteczko, J. Munchenberger, G. Reiss, S.O. Demokritov, Mapping of localized spin-wave excitations by near-field Brillouin light scattering. Appl. Phys. Lett. 97, 152502 (2010)

    Article  ADS  Google Scholar 

  47. A.A. Serga, T. Schneider, B. Hillebrands, S.O. Demokritov, M. Kostylev, Phase-sensitive Brillouin light scattering spectroscopy from spin-wave packets. Appl. Phys. Lett. 89, 063506 (2006)

    Article  ADS  Google Scholar 

  48. K. Vogt, H. Schultheiss, S.J. Hermsdoerfer, P. Pirro, A.A. Serga, B. Hillebrands, All-optical detection of phase fronts of propagating spin waves in a Ni81Fe19 microstripe. Appl. Phys. Lett. 95, 182508 (2009)

    Article  ADS  Google Scholar 

  49. V.E. Demidov, S. Urazhdin, S.O. Demokritov, Control of spin-wave phase and wavelength by electric current on the microscopic scale; Appl. Phys. Lett. 95, 262509 (2009)

    Google Scholar 

  50. J. Jorzick, S.O. Demokritov, C. Mathieu, B. Hillebrands, B. Bartenlian, C. Chappert, F. Rousseaux, A. Slavin, Brillouin light scattering from quantized spin waves in micron-size magnetic wires. Phys. Rev. B 60, 15194 (1999)

    Article  ADS  Google Scholar 

  51. G. Gubbiotti, O. Kazakova, G. Carlotti, M. Hanson, P. Vavassori, Spin-wave spectra in nanometric elliptical dots arrays. IEEE Trans. Magn. 39, 2750 (2003)

    Article  ADS  Google Scholar 

  52. J. Jorzick, S.O. Demokritov, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril, Spin wave quantization and dynamic coupling in micron-size circular magnetic dots. Appl. Phys. Lett. 75, 3859 (1999)

    Article  ADS  Google Scholar 

  53. R.I. Joseph, E. Schlomann, Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36, 1579–1593 (1965)

    Article  ADS  Google Scholar 

  54. P. Bryant, H. Suhl, Thin‐film magnetic patterns in an external field. Appl. Phys. Lett. 54, 2224 (1989)

    Article  ADS  Google Scholar 

  55. C. Bayer, S.O. Demokritov, B. Hillebrands, A.N. Slavin, Spin wave wells with multiple states created in small magnetic elements. Appl. Phys. Lett. 82, 607 (2003)

    Article  ADS  Google Scholar 

  56. V.E. Demidov, S.O. Demokritov, K. Rott, J. Krzysteczko, G. Reiss, Self-focusing of spin waves in Permalloy microstripes. Appl. Phys. Lett. 91, 252504 (2007)

    Article  ADS  Google Scholar 

  57. V.E. Demidov, J. Jersch, S.O. Demokritov, K. Rott, J. Krzysteczko, G. Reiss, Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Phys. Rev. B 79, 054417 (2009)

    Article  ADS  Google Scholar 

  58. V.E. Demidov, M. Kostylev, K. Rott, J. Mnchenberger, G. Reiss, S.O. Demokritov, Excitation of short-wavelength spin waves in magnonic waveguides. Appl. Phys. Lett. 99, 082507 (2011)

    Article  ADS  Google Scholar 

  59. E. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999)

    Article  Google Scholar 

  60. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)

    Article  ADS  Google Scholar 

  61. D.C. Ralph, M.D. Stiles, Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008)

    Article  ADS  Google Scholar 

  62. T.J. Silva, W.H. Rippard, Developments in nano-oscillators based upon spin-transfer point-contact devices. J. Magn. Magn. Mater. 320, 1260–1271 (2008)

    Article  ADS  Google Scholar 

  63. A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372 (2012)

    Article  ADS  Google Scholar 

  64. N. Locatelli, V. Cros, J. Grollier, Spin-torque building blocks. Nat. Mater. 13, 11 (2014)

    Article  ADS  Google Scholar 

  65. T. Chen, R.K. Dumas, A. Eklund, K. Muduli, A. Houshang, A.A. Awad, P. Duerrenfeld, B.G. Malm, A. Rusu, J. Akerman, Spin-torque and spin-Hall nano-oscillators. IEEE Trans. Magn. 99, 1 (2016)

    Google Scholar 

  66. M. Madami et al., Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotech. 6, 635–638 (2011)

    Article  ADS  Google Scholar 

  67. A. Houshang, E. Iacocca, P. Duerrenfeld, S.R. Sani, J. Akerman, R.K. Dumas, Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotech. 11, 280–286 (2016)

    Article  ADS  Google Scholar 

  68. V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov, Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 7, 10446 (2016)

    Article  ADS  Google Scholar 

  69. J. Xiao, G.E.W. Bauer, Spin-wave excitation in magnetic insulators by spin-transfer torque. Phys. Rev. Lett. 108, 217204 (2012)

    Article  ADS  Google Scholar 

  70. T. Jungwirth, J. Wunderlich, K. Olejnik, Spin Hall effect devices. Nat. Mater. 11, 382 (2012)

    Article  ADS  Google Scholar 

  71. F.J. Jedema, A.T. Filip, B.J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001)

    Article  ADS  Google Scholar 

  72. Y. Otani, T. Kimura, Manipulation of spin currents in metallic systems. Philos. Trans. R. Soc. Lond. Ser. A 369, 3136–3149 (2011)

    Article  ADS  Google Scholar 

  73. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect. Nature 455, 778–781 (2008)

    Article  ADS  Google Scholar 

  74. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh, Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010)

    Article  ADS  Google Scholar 

  75. V.M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990)

    Article  ADS  Google Scholar 

  76. A. Chernyshov, M. Overby, X. Liu, J.K. Furdyna, Y. Lyanda-Geller, L.P. Rokhinson, Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009)

    Article  Google Scholar 

  77. K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh, Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008)

    Article  ADS  Google Scholar 

  78. M. Evelt et al., High-efficiency control of spin-wave propagation in ultra-thin Yttrium Iron Garnet by the spin-orbit torque. Appl. Phys. Lett. 108, 172406 (2016)

    Article  ADS  Google Scholar 

  79. V.E. Demidov, S. Urazhdin, V. Tiberkevich, A. Slavin, S.O. Demokritov, Control of spin-wave emission from spin-torque nano-oscillators by microwave pumping. Phys. Rev. B 83, 060406 (R) (2011)

    Google Scholar 

  80. V.E. Demidov et al., Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011)

    Article  ADS  Google Scholar 

  81. A. Slavin, V. Tiberkevich, Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005)

    Article  ADS  Google Scholar 

  82. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitz. Ber. Preuss. Akad. Wiss. 1, 3–8 (1925)

    MATH  Google Scholar 

  83. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation. International Series of Monographs on Physics 116 (Clarendon Press, 2003)

    Google Scholar 

  84. P. Kapitza, Viscosity of liquid helium below the λ-point. Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  85. J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75 (1938)

    Article  ADS  Google Scholar 

  86. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a Dilute Atomic Vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  87. K.B. Davis et al., Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  88. T. Giamarchi, Ch. Regg, O. Tchernyschyov, Bose-Einstein condensation in magnetic insulators. Nat. Phys. 4, 198–204 (2008)

    Article  Google Scholar 

  89. L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard, Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608–5611 (2001)

    Article  ADS  Google Scholar 

  90. J. Kasprzak et al., Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  91. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    Article  ADS  Google Scholar 

  92. A. Amo et al., Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009)

    Article  ADS  Google Scholar 

  93. YuM Bunkov, G.E. Volovik, Bose-Einstein condensation of magnons in superfluid 3He. J. Low Temp. Phys. 150, 135–144 (2008)

    Article  ADS  Google Scholar 

  94. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010)

    Article  ADS  Google Scholar 

  95. V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin, Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007)

    Article  ADS  Google Scholar 

  96. O. Dzyapko, P. Nowik-Boltyk, B. Koene, V.E. Demidov, J. Jersch, A. Kirilyuk, T. Rasing, S.O. Demokritov, High-resolution magneto-optical Kerr effect spectroscopy of magnon Bose-Einstein condensate. IEEE Magn. Lett. 7, 3501805 (2016)

    Article  Google Scholar 

  97. P. Nowik-Boltyk, O. Dzyapko, V.E. Demidov, N.G. Berloff, S.O. Demokritov, Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons. Sci. Rep. 2, 482 (2012)

    Article  ADS  Google Scholar 

  98. V.E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G. Schmitz, G.A. Melkov, S.O. Demokritov, Magnon kinetics and Bose-Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008)

    Article  ADS  Google Scholar 

  99. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  100. I.A. Dzyaloshinsky, Thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  101. T. Moriya, New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  102. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007)

    Article  ADS  Google Scholar 

  103. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009)

    Article  ADS  Google Scholar 

  104. G. Chen, T. Ma, A.T. N’Diaye, H. Kwon, C. Won, Y. Wu, A.K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013)

    Article  ADS  Google Scholar 

  105. L. Udvardi, L. Szunyogh, Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films. Phys. Rev. Lett. 102, 207204 (2009)

    Article  ADS  Google Scholar 

  106. Kh Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr, W.X. Tang, J. Kirschner, Asymmetric spin-wave dispersion on Fe(110): direct evidence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 104, 137203 (2010)

    Article  ADS  Google Scholar 

  107. Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, Y. Tokura, Observation of the magnon Hall effect. Science 329, 297–299 (2010)

    Article  ADS  Google Scholar 

  108. R. Matsumoto, S. Murakami, Theoretical prediction of a rotating magnon wave packet in ferromagnets. Phys. Rev. Lett. 106, 197202 (2011)

    Article  ADS  Google Scholar 

  109. L. Zhang, J. Ren, J.-S. Wang, B. Li, Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013)

    Article  ADS  Google Scholar 

  110. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  111. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011)

    Article  ADS  Google Scholar 

  112. G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, M. Kostylev, Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D Appl. Phys. 43, 264003 (2010)

    Article  ADS  Google Scholar 

  113. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A. Slavin, YuN Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, YuA Filimonov, YuV Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov, Magnonics: a new research area in spintronics and spin wave electronics. Phys.-Usp. 58, 1002 (2015)

    Article  ADS  Google Scholar 

  114. S. Tacchi, G. Gubbiotti, M. Madami, G. Carlotti, Brillouin light scattering studies of 2D magnonic crystals. J. Phys.: Condens. Matter 29, 073001 (2017)

    ADS  Google Scholar 

  115. M. Krawczyk, D. Grundler, Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys.: Condens. Matter 26, 123202 (2014)

    Google Scholar 

  116. A.V. Chumak, T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, Magnonic crystals for data processing. J. Phys. D: Appl. 42, 205005 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej O. Demokritov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demokritov, S.O. (2018). Magnons. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_10

Download citation

Publish with us

Policies and ethics