Skip to main content

Solitons in Real Space: Domain Walls, Vortices, Hedgehogs, and Skyrmions

  • Chapter
  • First Online:
Topology in Magnetism

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

Abstract

Recent years have seen tremendous progress in the understanding of topological phenomena in magnetism, in particular at the nanoscale. In this overview, we consider smooth topological textures such as smooth domain walls, meron or vortices, and most importantly skyrmions. These structures derive their topological stability from the fact that they cannot be undone without violating the continuity of the magnetization field, similar to a knot in a rope. Owing to their topological stability, domain walls and skyrmions are prominent candidates in racetrack-type memories introduced by Parkin and co-workers. These smooth textures should be contrasted with singular topological point defects where the magnetization field is forced to vanish in a submanifold. Such point defects include Ising domain walls, vortices of easy-plane spins, and 3D Bloch points, ‘hedgehogs’, or ‘monopoles’. As domain walls, vortices, and skyrmions including their dynamical versions will be discussed in detail in later chapters by Thiaville and Miltat, Behncke and Meier, Chen, Bauer et al., and Åkerman, we give analytical arguments how domain walls emerge in quasi 1D nanowires, how magnetization reverses via nucleation, and why skyrmions exist in thin films. A variational ansatz for skyrmions that is derived from an exact \(2\pi \) domain wall profile provides an excellent approximation to numerical and experimental observations in films that include Dzyaloshinskii-Moriya interaction (DMI) and dipolar interactions. In systems of vanishing DMI, the two helical states of a skyrmion are degenerate, and switching between the two helicities occurs in a topologically allowed fashion. This mechanism is closely related to domain wall nucleation in nanowires. Finally we show that dynamical skyrmions may be regarded as 2D siblings of domain wall breathers, and can be described by the same variational ansatz inspired from \(2\pi \) domain walls as static skyrmions in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we refer to micromagnetics as a formalism based on a continuous magnetization field defined in continuous space. In recent years it has become common to use the term micromagnetics to exclusively describe numerical approaches. However, this is too narrow a terminology and potentially misleading as the formalism as originally set out by Brown [23] was an analytical continuum theory and did not refer to numerical methods. In contrast, numerical methods involve a discrete mesh whose scale is usually considerably larger than the physical lattice.

  2. 2.

    If every map from \(S^1\) into a space X is null-homotopic, then X is called ‘simply connected’ (e.g., \(\mathbb {R}^2\)).

  3. 3.

    Specifically, we have \({\varOmega }= * r dr \equiv {1 \over n!} \varepsilon _{i_0 i_1 \dots i_n} x^{i_0} dx^{i_1} \wedge \dots \wedge dx^{i_n}\). This differential n-form satisfies \(d {\varOmega }= \omega \) where \(\omega \) is the standard volume element on \({\mathbb R}^{n+1}\). Correspondingly, \( \int _N {\varOmega }= \int _{B^{n+1}} d {\varOmega }= (n+1) \int _{B^{n+1}} \omega = (n+1) V_{n+1}\), where in the first step we made use of Stokes’ theorem and \(B^{n+1}\) denotes the unit ball in \({\mathbb R}^{n+1}\) with \(\partial B^{n+1} = S^n\) and \(V_{n+1}\) its volume.

  4. 4.

    For a nanowire with effective easy-axis along the wire (x-axis), as is relevant for data storage in perpendicular hard disk media, the field is applied along wire and the effective anisotropies are given by \(-K_{e,eff} m_x^2 +K_{h,eff} m_z^2\) with \(K_{e,eff} = K_{e,cryst} + (\mu _0/2) M_0^2 (N_x-N_y)\) and correspondingly for \(K_{h,eff} \). The nucleus solution is then obtained via the replacement \(\theta \rightarrow \phi \). For a discussion of effective anisotropies for different sample shapes, cf. [19].

  5. 5.

    It is amusing to note that Bloch in his paper actually acknowledges Heisenberg for the solution of the corresponding differential equation, so perhaps it should be more appropriately named the ‘Heisenberg-Bloch’ wall. Also, note that in the sequel we usually do not distinguish between Bloch and Néel walls for the quasi 1D situation.

  6. 6.

    With \(\partial _x \theta _{QC} = C \, \mathrm{sech}\, x\) and \(\cos \theta _{QC} = - \tanh (Qx)\) we immediately verify that \((1/\pi )\int _{-\infty }^\infty \! dx \; \partial _x \! \theta _{QC} = C\) and \([ \cos \theta _{QC}(-\infty ) - \cos \theta _{QC}(\infty )]/2 =Q\).

References

  1. F. Bloch, Zeit. f. Phys. 61, 206–219 (1930)

    Article  ADS  Google Scholar 

  2. D. Landau, E. Lifshitz, Phys. Zeit. Sowj. 61, 153–169 (1935)

    Google Scholar 

  3. T.H.R. Skyrme, Proc. R. Soc. Lond. Ser. A 260, 127–138 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  4. T.H.R. Skyrme, Nucl. Phys. 31, 556–569 (1962)

    Article  MathSciNet  Google Scholar 

  5. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915–919 (2009)

    Article  ADS  Google Scholar 

  6. U.K. Rössler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797–801 (2006)

    Article  ADS  Google Scholar 

  7. B. Roessli, P. Böni, W.E. Fischer, Y. Endoh, Phys. Rev. Lett. 88, 237204 (2002)

    Article  ADS  Google Scholar 

  8. A.N. Bogdanov, D.A. Yablonsky, Sov. Phys. JETP 95, 178–182 (1989)

    Google Scholar 

  9. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. Jungfleisch, F. Fradin, J. Pearson, Y. Tserkovnyak, K. Wang, O. Heinonen, S. te Velthuis, A. Hoffmann, Science 349, 283–286 (2015)

    Article  ADS  Google Scholar 

  10. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899–911 (2013)

    Article  ADS  Google Scholar 

  11. H.B. Braun, Adv. Phys. 61, 1–116 (2012)

    Article  ADS  Google Scholar 

  12. S.-H. Yang, K.-S. Ryu, S. Parkin, Nat. Nanotechnol. 10, 221–226 (2015)

    Article  ADS  Google Scholar 

  13. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C.A.F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J.M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Nat. Nanotechnol. 11, 444–449 (2016)

    Article  ADS  Google Scholar 

  14. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190–194 (2008)

    Article  ADS  Google Scholar 

  15. H.B. Braun, Phys. Rev. Lett. 71, 3557–3560 (1993)

    Article  ADS  Google Scholar 

  16. A. Aharoni, J. Appl. Phys. 80, 3133–3134 (1996)

    Article  ADS  Google Scholar 

  17. H.J. Richter, J. Phys. D 40, R149–R177 (2007)

    Article  ADS  Google Scholar 

  18. A. Malozemoff, J. Slonczewski, Magnetic Domain Walls in Bubble Materials. Advances in Materials and Device Research (Academic Press Inc, 1979)

    Google Scholar 

  19. H.B. Braun, Phys. Rev. B 50, 16485 (1994)

    Article  ADS  Google Scholar 

  20. N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, R. Wiesendanger, Phys. Rev. Lett. 114, 177203 (2015)

    Article  ADS  Google Scholar 

  21. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nat. Nanotechnol. 8, 839–844 (2013)

    Article  ADS  Google Scholar 

  22. S. Woo, K. Litzius, B. Krueger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, G.R.S.D. Beach, Nat. Mat. 15, 501–506 (2016)

    Article  Google Scholar 

  23. W.F. Brown, Micromagnetics (Interscience, 1963)

    Google Scholar 

  24. M. Nakahara, Geometry, Topology and Physics. Graduate Student Series in Physics (Hilger, Bristol, 1990)

    Google Scholar 

  25. N. Mermin, Rev. Mod. Phys. 51, 591–648 (1979)

    Article  ADS  Google Scholar 

  26. T. Eggebrecht, M. Möller, J.G. Gatzmann, N. Rubiano da Silva, A. Feist, U. Martens, H. Ulrichs, M. Münzenberg, C. Ropers, S. Schäfer, Phys. Rev. Lett. 118, 097203 (2017)

    Article  ADS  Google Scholar 

  27. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger, Science 298, 577–580 (2002)

    Article  ADS  Google Scholar 

  28. T. Kamionka, M. Martens, K.W. Chou, M. Curcic, A. Drews, G. Schütz, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, G. Meier, Phys. Rev. Lett. 105, 137204 (2010)

    Article  ADS  Google Scholar 

  29. G. Chen, A.T. N’Diaye, S.P. Kang, H.Y. Kwon, C. Won, Y. Wu, Z.Q. Qiu, A.K. Schmid, Nat. Commun. 6, 6598 (2015)

    Article  ADS  Google Scholar 

  30. G. Toulouse, M. Kleman, J. De Phys. Lett. 37, L149–L151 (1976)

    Article  Google Scholar 

  31. V.P. Mineev, Topologically stable defects and solitons in ordered media, in Classic Reviews in Physics, vol. 1 (Harwood Academic Publishers, 1998)

    Google Scholar 

  32. J. Rubinstein, J. Math. Phys. 11, 258–267 (1970)

    Article  ADS  Google Scholar 

  33. D. Finkelstein, C. Misner, Ann. Phys. 6, 230–243 (1959)

    Article  ADS  Google Scholar 

  34. U. Enz, Helv. Phys. Acta 37, 245–253 (1964)

    Google Scholar 

  35. R. Rajaraman, Solitons and Instantons an Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam a.o, 1982)

    MATH  Google Scholar 

  36. H.B. Braun, J. Kulda, B. Roessli, D. Visser, K.W. Krämer, H.U. Güdel, P. Böni, Nat. Phys. 1, 159–163 (2005)

    Article  Google Scholar 

  37. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger, Nature 447, 190–193 (2007)

    Article  ADS  Google Scholar 

  38. N. Grisewood, J. Eves, T. Usher, H.B. Braun, J. Appl. Phys. 111, 07c706 (2012)

    Article  Google Scholar 

  39. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901–904 (2010)

    Article  ADS  Google Scholar 

  40. O. Boulle, J. Vogel, H.X. Yang, S. Pizzini, D.D. Chaves, A. Locatelli, T.O. Mentes, A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigne, A. Stashkevich, S.M. Cherif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, G. Gaudin, Nat. Nanotechnol. 11, 449–455 (2016)

    Article  ADS  Google Scholar 

  41. A.A. Belavin, A.M. Polyakov, JETP Lett. 22, 245 (1975)

    ADS  Google Scholar 

  42. O. Chubykalo-Fesenko, U. Nowak, R.W. Chantrell, D. Garanin, Phys. Rev. B 74, 094436 (2006)

    Article  ADS  Google Scholar 

  43. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  44. M.E. Schabes, H.N. Bertram, J. Appl. Phys. 64, 1347–1357 (1988)

    Article  ADS  Google Scholar 

  45. R.P. Cowburn, A.O. Adeyeye, M.E. Welland, Phys. Rev. Lett. 81, 5414–5417 (1998)

    Article  ADS  Google Scholar 

  46. C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, D. Pescia, Science 282, 449–451 (1998)

    Article  ADS  Google Scholar 

  47. M. Hehn, K. Ounadjela, J.P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, C. Chappert, Science 272, 1782–1785 (1996)

    Article  ADS  Google Scholar 

  48. U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983–986 (2000)

    Article  ADS  Google Scholar 

  49. E.Y. Vedmedenko, A. Kubetzka, K. von Bergmann, O. Pietzsch, M. Bode, J. Kirschner, H.P. Oepen, R. Wiesendanger, Phys. Rev. Lett. 92, 077207 (2004)

    Google Scholar 

  50. G. Woltersdorf, C.H. Back, Phys. Rev. Lett. 99, 227207 (2007)

    Article  ADS  Google Scholar 

  51. S. Parkin, U.S. Patents 6834005, 6898132, 6920062, 7031178

    Google Scholar 

  52. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Science 320, 209–211 (2008)

    Article  ADS  Google Scholar 

  53. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S.S.P. Parkin, Nature 443, 197–200 (2006)

    Article  ADS  Google Scholar 

  54. J.L. Eves, N. Grisewood, R.V. Hügli, H.B. Braun, J. Magn. Magn. Mater. 322, 1381–1384 (2010)

    Article  ADS  Google Scholar 

  55. H.B. Braun, O. Brodbeck, Phys. Rev. Lett. 70, 3335–3338 (1993)

    Article  ADS  Google Scholar 

  56. H.B. Braun, J. Appl. Phys. 85, 6172–6174 (1999)

    Article  ADS  Google Scholar 

  57. G.D. Chaves-O’Flynn, A.D. Kent, D.L. Stein, Phys. Rev. B 79, 184421 (2009)

    Article  ADS  Google Scholar 

  58. R. Kohn, V. Slastikov, Arch. Ration. Mech. Anal. 178 (2005)

    Google Scholar 

  59. H.B. Braun, J. Appl. Phys. 76, 6310–6315 (1994)

    Article  ADS  Google Scholar 

  60. A. Kubetzka, O. Pietzsch, M. Bode, R. Wiesendanger, Phys. Rev. B 67, 020401 (2003)

    Article  ADS  Google Scholar 

  61. H.B. Braun, D. Loss, Europhys. Lett. 31, 555 (1995)

    Article  ADS  Google Scholar 

  62. H.B. Braun, D. Loss, Phys. Rev. B 53, 3237–3255 (1996)

    Article  ADS  Google Scholar 

  63. Y. Yoshimura, K.-J. Kim, T. Taniguchi, T. Tono, K. Ueda, R. Hiramatsu, T. Moriyama, K. Yamada, Y. Nakatani, T. Ono, Nat. Phys. 12, 157–161 (2016)

    Article  Google Scholar 

  64. E.R. Lewis, D. Petit, A.V. Jausovec, L. O’Brien, D.E. Read, H.T. Zeng, R.P. Cowburn, Phys. Rev. Lett. 102, 057209 (2009)

    Article  ADS  Google Scholar 

  65. A. Cavallin, F.D. Natterer, S. Ouazi, G. Moulas, A. Lehnert, S. Rusponi, H. Brune, Phys. Rev. B 90, 144427 (2014)

    Article  ADS  Google Scholar 

  66. P. Milde, D. Koehler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schuette, A. Rosch, Science 340, 1076–1080 (2013)

    Article  ADS  Google Scholar 

  67. S.M. Mohseni, S.R. Sani, J. Persson, T.N.A. Nguyen, S. Chung, Y. Pogoryelov, P.K. Muduli, E. Iacocca, A. Eklund, R.K. Dumas, S. Bonetti, A. Deac, M.A. Hoefer, J. Akerman, Science 339, 1295–1298 (2013)

    Article  ADS  Google Scholar 

  68. M. Nagao, Y.-G. So, H. Yoshida, M. Isobe, T. Hara, K. Ishizuka, K. Kimoto, Nat. Nanotechnol. 8, 325–328 (2013)

    Article  ADS  Google Scholar 

  69. X.Z. Yu, K. Shibata, W. Koshibae, Y. Tokunaga, Y. Kaneko, T. Nagai, K. Kimoto, Y. Taguchi, N. Nagaosa, Y. Tokura, Phys. Rev. B 93, 134417 (2016)

    Article  ADS  Google Scholar 

  70. Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Åkerman, Nat. Commun. 6, 8193 (2015)

    Article  ADS  Google Scholar 

  71. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636–639 (2013)

    Article  ADS  Google Scholar 

  72. T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, D. Grundler, Nat. Mat. 14, 478–483 (2015)

    Article  Google Scholar 

  73. S.A. Montoya, S. Couture, J.J. Chess, J.C.T. Lee, N. Kent, M.-Y. Im, S.D. Kevan, P. Fischer, B.J. McMorran, S. Roy, V. Lomakin, E.E. Fullerton, Phys. Rev. B 95, 224405 (2017)

    Article  ADS  Google Scholar 

  74. F. Ma, Y. Zhou, H.B. Braun, W.S. Lew, Nano Lett. 15, 4029–4036 (2015)

    Article  ADS  Google Scholar 

  75. Z.K. Wang, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, S. Jain, A.O. Adeyeye, Appl. Phys. Lett. 94, 083112 (2009)

    Article  ADS  Google Scholar 

  76. A.D. Karenowska, J.F. Gregg, V.S. Tiberkevich, A.N. Slavin, A.V. Chumak, A.A. Serga, B. Hillebrands, Phys. Rev. Lett. 108, 015505 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge numerous helpful discussions with J. Åkerman, P. Böni, R.V. Hügli, B. Roessli, and Y. Zhou. This research has been supported by Science Foundation Ireland under 11/PI/1048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Benjamin Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braun, HB. (2018). Solitons in Real Space: Domain Walls, Vortices, Hedgehogs, and Skyrmions. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_1

Download citation

Publish with us

Policies and ethics