Skip to main content

Neuroimaging and Psychopathological Domains

  • Chapter
  • First Online:
Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders

Abstract

Primary psychotic disorders are characterized by clinical heterogeneity in terms of psychopathological manifestations, course, and outcome. Several data demonstrated that symptoms cluster in psychopathological dimensions which are more accurate than diagnostic categories in predicting risk factors, course, response to treatment, and functional outcome. The dimensions might be related to distinct pathophysiological mechanisms which can coexist in individual subjects.

Brain imaging studies in primary psychotic disorders produced inconsistent findings and demonstrated a large overlap of measures between patients and control subjects at the individual level. These observations suggest that a neurobiological heterogeneity parallels the clinical heterogeneity of psychotic disorders.

The investigation of brain imaging correlates of the psychopathological dimensions in primary psychotic disorders has produced testable hypotheses on pathophysiological processes. Discrepancies in findings paralleled controversies and uncertainty in the definition, assessment, and boundaries of each dimension.

Along with the review of findings related to the dimensions, the present chapter illustrates also findings from studies investigating individual symptoms, consistently clustering in specific psychopathological dimensions, or domains central to the pathophysiological hypotheses under testing, such as avolition-apathy, expressive deficit, formal thought disorder, and hallucinations, for the contribution of these findings to the refinement of pathophysiological hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162(12):2233–45. https://doi.org/10.1176/appi.ajp.162.12.2233.

    Article  PubMed  Google Scholar 

  2. Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry. 2017;74(11):1104–11. https://doi.org/10.1001/jamapsychiatry.2017.2663.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liddle PF, Friston KJ, Frith CD, Hirsch SR, Jones T, Frackowiak RS. Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry. 1992;160:179–86.

    Article  CAS  PubMed  Google Scholar 

  4. Liddle PF, Friston KJ, Frith CD, Frackowiak RS. Cerebral blood flow and mental processes in schizophrenia. J R Soc Med. 1992;85(4):224–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Flaum M, O’Leary DS, Swayze VW 2nd, Miller DD, Arndt S, Andreasen NC. Symptom dimensions and brain morphology in schizophrenia and related psychotic disorders. J Psychiatr Res. 1995;29(4):261–76.

    Article  CAS  PubMed  Google Scholar 

  6. van Os J, Verdoux H, Maurice-Tison S, Gay B, Liraud F, Salamon R, Bourgeois M. Self-reported psychosis-like symptoms and the continuum of psychosis. Soc Psychiatry Psychiatr Epidemiol. 1999;34(9):459–63.

    Article  PubMed  Google Scholar 

  7. Peralta V, Cuesta MJ. How many and which are the psychopathological dimensions in schizophrenia? Issues influencing their ascertainment. Schizophr Res. 2001;49(3):269–85.

    Article  CAS  PubMed  Google Scholar 

  8. Demjaha A, Morgan K, Morgan C, Landau S, Dean K, Reichenberg A, Sham P, Fearon P, Hutchinson G, Jones PB, Murray RM, Dazzan P. Combining dimensional and categorical representation of psychosis: the way forward for DSM-V and ICD-11? Psychol Med. 2009;39(12):1943–55. https://doi.org/10.1017/S0033291709990651.

    Article  CAS  PubMed  Google Scholar 

  9. Liddle PF. The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. Br J Psychiatry. 1987;151:145–51.

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter WT Jr, Strauss JS, Bartko JJ. The diagnosis and understanding of schizophrenia. Part I. Use of signs and symptoms for the identification of schizophrenic patients. Schizophr Bull. 1974;11:37–49.

    Article  Google Scholar 

  11. Rosenman S, Korten A, Medway J, Evans M. Dimensional vs. categorical diagnosis in psychosis. Acta Psychiatr Scand. 2003;107(5):378–84.

    Article  CAS  PubMed  Google Scholar 

  12. Allardyce J, Gaebel W, Zielasek J, van Os J. Deconstructing Psychosis conference February 2006: the validity of schizophrenia and alternative approaches to the classification of psychosis. Schizophr Bull. 2007;33(4):863–7. https://doi.org/10.1093/schbul/sbm051.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galderisi S, Bucci P, Mucci A, Kirkpatrick B, Pini S, Rossi A, Vita A, Maj M. Categorical and dimensional approaches to negative symptoms of schizophrenia: focus on long-term stability and functional outcome. Schizophr Res. 2013;147(1):157–62. https://doi.org/10.1016/j.schres.2013.03.020.

    Article  PubMed  Google Scholar 

  14. Galderisi S, Rossi A, Rocca P, Bertolino A, Mucci A, Bucci P, Rucci P, Gibertoni D, Aguglia E, Amore M, Bellomo A, Biondi M, Brugnoli R, Dell’Osso L, De Ronchi D, Di Emidio G, Di Giannantonio M, Fagiolini A, Marchesi C, Monteleone P, Oldani L, Pinna F, Roncone R, Sacchetti E, Santonastaso P, Siracusano A, Vita A, Zeppegno P, Maj M, Italian Network For Research on Psychoses. The influence of illness-related variables, personal resources and context-related factors on real-life functioning of people with schizophrenia. World Psychiatry. 2014;13(3):275–87. https://doi.org/10.1002/wps.20167.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kirkpatrick B, Mucci A, Galderisi S. Primary, enduring negative symptoms: an update on research. Schizophr Bull. 2017;43(4):730–6. https://doi.org/10.1093/schbul/sbx064.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Strik W, Stegmayer K, Walther S, Dierks T. Systems neuroscience of psychosis: mapping schizophrenia symptoms onto brain systems. Neuropsychobiology. 2017;75(3):100–16. https://doi.org/10.1159/000485221.

    Article  PubMed  Google Scholar 

  17. Andreasen NC, Arndt S, Alliger R, Miller D, Flaum M. Symptoms of schizophrenia. Methods, meanings, and mechanisms. Arch Gen Psychiatry. 1995;52(5):341–51.

    Article  CAS  PubMed  Google Scholar 

  18. Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32(2):214–9. https://doi.org/10.1093/schbul/sbj053.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andreasen NC, Carpenter WT Jr. Diagnosis and classification of schizophrenia. Schizophr Bull. 1993;19(2):199–214.

    Article  CAS  PubMed  Google Scholar 

  20. Wing JK. Use and misuse of the PSE. Br J Psychiatry. 1983;143:111–7.

    Article  CAS  PubMed  Google Scholar 

  21. Fukuzako H, Yamada K, Kodama S, Yonezawa T, Fukuzako T, Takenouchi K, Kajiya Y, Nakajo M, Takigawa M. Hippocampal volume asymmetry and age at illness onset in males with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 1997;247(5):248–51.

    Article  CAS  PubMed  Google Scholar 

  22. Chua SE, Wright IC, Poline JB, Liddle PF, Murray RM, Frackowiak RS, Friston KJ, McGuire PK. Grey matter correlates of syndromes in schizophrenia. A semi-automated analysis of structural magnetic resonance images. Br J Psychiatry. 1997;170:406–10.

    Article  CAS  PubMed  Google Scholar 

  23. Woodruff PW, Phillips ML, Rushe T, Wright IC, Murray RM, David AS. Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophr Res. 1997;23(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  24. Whitford TJ, Farrow TF, Gomes L, Brennan J, Harris AW, Williams LM. Grey matter deficits and symptom profile in first episode schizophrenia. Psychiatry Res. 2005;139(3):229–38. https://doi.org/10.1016/j.pscychresns.2005.05.010.

    Article  PubMed  Google Scholar 

  25. Koutsouleris N, Gaser C, Jager M, Bottlender R, Frodl T, Holzinger S, Schmitt GJ, Zetzsche T, Burgermeister B, Scheuerecker J, Born C, Reiser M, Moller HJ, Meisenzahl EM. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. NeuroImage. 2008;39(4):1600–12. https://doi.org/10.1016/j.neuroimage.2007.10.029.

    Article  PubMed  Google Scholar 

  26. Grube BS, Bilder RM, Goldman RS. Meta-analysis of symptom factors in schizophrenia. Schizophr Res. 1998;31(2–3):113–20.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi T, Suzuki M, Zhou SY, Tanino R, Hagino H, Kawasaki Y, Matsui M, Seto H, Kurachi M. Morphologic alterations of the parcellated superior temporal gyrus in schizophrenia spectrum. Schizophr Res. 2006;83(2–3):131–43. https://doi.org/10.1016/j.schres.2006.01.016.

    Article  PubMed  Google Scholar 

  28. Nakamura M, Nestor PG, McCarley RW, Levitt JJ, Hsu L, Kawashima T, Niznikiewicz M, Shenton ME. Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain. 2007;130(Pt 3):693–707. https://doi.org/10.1093/brain/awm007.

    Article  PubMed  Google Scholar 

  29. Whitford TJ, Farrow TF, Williams LM, Gomes L, Brennan J, Harris AW. Delusions and dorso-medial frontal cortex volume in first-episode schizophrenia: a voxel-based morphometry study. Psychiatry Res. 2009;172(3):175–9. https://doi.org/10.1016/j.pscychresns.2008.07.011.

    Article  PubMed  Google Scholar 

  30. Collin G, Derks EM, van Haren NE, Schnack HG, Hulshoff Pol HE, Kahn RS, Cahn W. Symptom dimensions are associated with progressive brain volume changes in schizophrenia. Schizophr Res. 2012;138(2–3):171–6. https://doi.org/10.1016/j.schres.2012.03.036.

    Article  CAS  PubMed  Google Scholar 

  31. Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med. 2011;41(8):1701–8. https://doi.org/10.1017/S0033291710002205.

    Article  CAS  PubMed  Google Scholar 

  32. Kuhn S, Musso F, Mobascher A, Warbrick T, Winterer G, Gallinat J. Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl Psychiatry. 2012;2:e127. https://doi.org/10.1038/tp.2012.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz-Santianez R, Crespo-Facorro B, Suarez-Pinilla P, van Haren NEM, de Zwarte SMC, Kahn RS, Cahn W, Doan NT, Jorgensen KN, Gurholt TP, Agartz I, Andreassen OA, Westlye LT, Melle I, Berg AO, Morch-Johnsen L, Faerden A, Flyckt L, Fatouros-Bergman H, Karolinska Schizophrenia Project C, Jonsson EG, Hashimoto R, Yamamori H, Fukunaga M, Jahanshad N, De Rossi P, Piras F, Banaj N, Spalletta G, Gur RE, Gur RC, Wolf DH, Satterthwaite TD, Beard LM, Sommer IE, Koops S, Gruber O, Richter A, Kramer B, Kelly S, Donohoe G, McDonald C, Cannon DM, Corvin A, Gill M, Di Giorgio A, Bertolino A, Lawrie S, Nickson T, Whalley HC, Neilson E, Calhoun VD, Thompson PM, Turner JA, Ehrlich S. Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. Psychol Med. 2018;48(1):82–94. https://doi.org/10.1017/S0033291717001283.

    Article  CAS  PubMed  Google Scholar 

  34. Walton E, Hibar DP, van Erp TG, Potkin SG, Roiz-Santianez R, Crespo-Facorro B, Suarez-Pinilla P, Van Haren NE, de Zwarte SM, Kahn RS, Cahn W, Doan NT, Jorgensen KN, Gurholt TP, Agartz I, Andreassen OA, Westlye LT, Melle I, Berg AO, Morch-Johnsen L, Faerden A, Flyckt L, Fatouros-Bergman H, Karolinska Schizophrenia Project C, Jonsson EG, Hashimoto R, Yamamori H, Fukunaga M, Preda A, De Rossi P, Piras F, Banaj N, Ciullo V, Spalletta G, Gur RE, Gur RC, Wolf DH, Satterthwaite TD, Beard LM, Sommer IE, Koops S, Gruber O, Richter A, Kramer B, Kelly S, Donohoe G, McDonald C, Cannon DM, Corvin A, Gill M, Di Giorgio A, Bertolino A, Lawrie S, Nickson T, Whalley HC, Neilson E, Calhoun VD, Thompson PM, Turner JA, Ehrlich S. Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. Acta Psychiatr Scand. 2017;135(5):439–47. https://doi.org/10.1111/acps.12718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szeszko PR, Robinson DG, Ashtari M, Vogel J, Betensky J, Sevy S, Ardekani BA, Lencz T, Malhotra AK, McCormack J, Miller R, Lim KO, Gunduz-Bruce H, Kane JM, Bilder RM. Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology. 2008;33(5):976–84. https://doi.org/10.1038/sj.npp.1301480.

    Article  PubMed  Google Scholar 

  36. Whitford TJ, Kubicki M, Schneiderman JS, O’Donnell LJ, King R, Alvarado JL, Khan U, Markant D, Nestor PG, Niznikiewicz M, McCarley RW, Westin CF, Shenton ME. Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biol Psychiatry. 2010;68(1):70–7. https://doi.org/10.1016/j.biopsych.2010.03.025.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chan WY, Yang GL, Chia MY, Lau IY, Sitoh YY, Nowinski WL, Sim K. White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res. 2010;119(1–3):52–60. https://doi.org/10.1016/j.schres.2009.12.012.

    Article  PubMed  Google Scholar 

  38. Park JY, Park HJ, Kim DJ, Kim JJ. Positive symptoms and water diffusivity of the prefrontal and temporal cortices in schizophrenia patients: a pilot study. Psychiatry Res. 2014;224(1):49–57. https://doi.org/10.1016/j.pscychresns.2014.07.003.

    Article  PubMed  Google Scholar 

  39. Bracht T, Horn H, Strik W, Federspiel A, Razavi N, Stegmayer K, Wiest R, Dierks T, Muller TJ, Walther S. White matter pathway organization of the reward system is related to positive and negative symptoms in schizophrenia. Schizophr Res. 2014;153(1–3):136–42. https://doi.org/10.1016/j.schres.2014.01.015.

    Article  PubMed  Google Scholar 

  40. Bijanki KR, Hodis B, Magnotta VA, Zeien E, Andreasen NC. Effects of age on white matter integrity and negative symptoms in schizophrenia. Schizophr Res. 2015;161(1):29–35. https://doi.org/10.1016/j.schres.2014.05.031.

    Article  PubMed  Google Scholar 

  41. Molina V, Reig S, Pascau J, Sanz J, Sarramea F, Gispert JD, Luque R, Benito C, Palomo T, Desco M. Anatomical and functional cerebral variables associated with basal symptoms but not risperidone response in minimally treated schizophrenia. Psychiatry Res. 2003;124(3):163–75.

    Article  PubMed  Google Scholar 

  42. Lahti AC, Weiler MA, Holcomb HH, Tamminga CA, Carpenter WT, McMahon R. Correlations between rCBF and symptoms in two independent cohorts of drug-free patients with schizophrenia. Neuropsychopharmacology. 2006;31(1):221–30. https://doi.org/10.1038/sj.npp.1300837.

    Article  PubMed  Google Scholar 

  43. Roiser JP, Howes OD, Chaddock CA, Joyce EM, McGuire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2013;39(6):1328–36. https://doi.org/10.1093/schbul/sbs147.

    Article  PubMed  Google Scholar 

  44. Yuasa S, Kurachi M, Suzuki M, Kadono Y, Matsui M, Saitoh O, Seto H. Clinical symptoms and regional cerebral blood flow in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 1995;246(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  45. Sorg C, Manoliu A, Neufang S, Myers N, Peters H, Schwerthoffer D, Scherr M, Muhlau M, Zimmer C, Drzezga A, Forstl H, Bauml J, Eichele T, Wohlschlager AM, Riedl V. Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull. 2013;39(2):387–95. https://doi.org/10.1093/schbul/sbr184.

    Article  PubMed  Google Scholar 

  46. Orliac F, Naveau M, Joliot M, Delcroix N, Razafimandimby A, Brazo P, Dollfus S, Delamillieure P. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophr Res. 2013;148(1–3):74–80. https://doi.org/10.1016/j.schres.2013.05.007.

    Article  PubMed  Google Scholar 

  47. Duan HF, Gan JL, Yang JM, Cheng ZX, Gao CY, Shi ZJ, Zhu XQ, Liang XJ, Zhao LM. A longitudinal study on intrinsic connectivity of hippocampus associated with positive symptom in first-episode schizophrenia. Behav Brain Res. 2015;283:78–86. https://doi.org/10.1016/j.bbr.2015.01.022.

    Article  PubMed  Google Scholar 

  48. Chen X, Duan M, He H, Yang M, Klugah-Brown B, Xu H, Lai Y, Luo C, Yao D. Functional abnormalities of the right posterior insula are related to the altered self-experience in schizophrenia. Psychiatry Res. 2016;256:26–32. https://doi.org/10.1016/j.pscychresns.2016.09.006.

    Article  Google Scholar 

  49. Menon V, Anagnoson RT, Mathalon DH, Glover GH, Pfefferbaum A. Functional neuroanatomy of auditory working memory in schizophrenia: relation to positive and negative symptoms. NeuroImage. 2001;13(3):433–46. https://doi.org/10.1006/nimg.2000.0699.

    Article  CAS  PubMed  Google Scholar 

  50. Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001;158(7):1105–13. https://doi.org/10.1176/appi.ajp.158.7.1105.

    Article  CAS  PubMed  Google Scholar 

  51. Snitz BE, MacDonald A 3rd, Cohen JD, Cho RY, Becker T, Carter CS. Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry. 2005;162(12):2322–9. https://doi.org/10.1176/appi.ajp.162.12.2322.

    Article  PubMed  Google Scholar 

  52. MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ, Stenger VA, Cohen JD. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry. 2005;162(3):475–84. https://doi.org/10.1176/appi.ajp.162.3.475.

    Article  PubMed  Google Scholar 

  53. Surguladze S, Russell T, Kucharska-Pietura K, Travis MJ, Giampietro V, David AS, Phillips ML. A reversal of the normal pattern of parahippocampal response to neutral and fearful faces is associated with reality distortion in schizophrenia. Biol Psychiatry. 2006;60(5):423–31. https://doi.org/10.1016/j.biopsych.2005.11.021.

    Article  PubMed  Google Scholar 

  54. Szendi I, Kiss M, Racsmany M, Boda K, Cimmer C, Voros E, Kovacs ZA, Szekeres G, Galsi G, Pleh C, Csernay L, Janka Z. Correlations between clinical symptoms, working memory functions and structural brain abnormalities in men with schizophrenia. Psychiatry Res. 2006;147(1):47–55. https://doi.org/10.1016/j.pscychresns.2005.05.014.

    Article  PubMed  Google Scholar 

  55. Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry. 2007;61(10):1171–8. https://doi.org/10.1016/j.biopsych.2006.11.029.

    Article  PubMed  Google Scholar 

  56. Corlett PR, Murray GK, Honey GD, Aitken MR, Shanks DR, Robbins TW, Bullmore ET, Dickinson A, Fletcher PC. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain. 2007;130(Pt 9):2387–400. https://doi.org/10.1093/brain/awm173.

    Article  CAS  PubMed  Google Scholar 

  57. Schlagenhauf F, Sterzer P, Schmack K, Ballmaier M, Rapp M, Wrase J, Juckel G, Gallinat J, Heinz A. Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol Psychiatry. 2009;65(12):1032–9. https://doi.org/10.1016/j.biopsych.2008.12.016.

    Article  PubMed  Google Scholar 

  58. Walter H, Kammerer H, Frasch K, Spitzer M, Abler B. Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology. 2009;206(1):121–32. https://doi.org/10.1007/s00213-009-1586-4.

    Article  CAS  PubMed  Google Scholar 

  59. Michalopoulou PG, Giampietro VP, Morley LA, Azim A, Kapur S, Lykouras L, Shergill SS. The effects of reality distortion syndrome on salient stimuli processing in patients with schizophrenia: an fMRI study. Psychiatry Res. 2010;183(2):93–8. https://doi.org/10.1016/j.pscychresns.2010.04.010.

    Article  PubMed  Google Scholar 

  60. Romaniuk L, Honey GD, King JR, Whalley HC, McIntosh AM, Levita L, Hughes M, Johnstone EC, Day M, Lawrie SM, Hall J. Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Arch Gen Psychiatry. 2010;67(12):1246–54. https://doi.org/10.1001/archgenpsychiatry.2010.169.

    Article  PubMed  Google Scholar 

  61. Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res. 2010;44(6):364–72. https://doi.org/10.1016/j.jpsychires.2009.09.003.

    Article  PubMed  Google Scholar 

  62. Gradin VB, Waiter G, O’Connor A, Romaniuk L, Stickle C, Matthews K, Hall J, Douglas Steele J. Salience network-midbrain dysconnectivity and blunted reward signals in schizophrenia. Psychiatry Res. 2013;211(2):104–11. https://doi.org/10.1016/j.pscychresns.2012.06.003.

    Article  PubMed  Google Scholar 

  63. Koch K, Rus OG, Reess TJ, Schachtzabel C, Wagner G, Schultz CC, Sorg C, Schlosser RG. Functional connectivity and grey matter volume of the striatum in schizophrenia. Br J Psychiatry. 2014;205(3):204–13. https://doi.org/10.1192/bjp.bp.113.138099.

    Article  PubMed  Google Scholar 

  64. Radua J, Schmidt A, Borgwardt S, Heinz A, Schlagenhauf F, McGuire P, Fusar-Poli P. Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis. JAMA Psychiatry. 2015;72(12):1243–51. https://doi.org/10.1001/jamapsychiatry.2015.2196.

    Article  PubMed  Google Scholar 

  65. Reckless GE, Andreassen OA, Server A, Ostefjells T, Jensen J. Negative symptoms in schizophrenia are associated with aberrant striato-cortical connectivity in a rewarded perceptual decision-making task. Neuroimage Clin. 2015;8:290–7. https://doi.org/10.1016/j.nicl.2015.04.025.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Raij TT, Mantyla T, Mantere O, Kieseppa T, Suvisaari J. Cortical salience network activation precedes the development of delusion severity. Psychol Med. 2016;46(13):2741–8. https://doi.org/10.1017/S0033291716001057.

    Article  CAS  PubMed  Google Scholar 

  67. Pankow A, Katthagen T, Diner S, Deserno L, Boehme R, Kathmann N, Gleich T, Gaebler M, Walter H, Heinz A, Schlagenhauf F. Aberrant salience is related to dysfunctional self-referential processing in psychosis. Schizophr Bull. 2016;42(1):67–76. https://doi.org/10.1093/schbul/sbv098.

    Article  PubMed  Google Scholar 

  68. Goghari VM, Sponheim SR, MacDonald AW 3rd. The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev. 2010;34(3):468–86. https://doi.org/10.1016/j.neubiorev.2009.09.004.

    Article  PubMed  Google Scholar 

  69. Galderisi S, Rossi A, Rocca P, Bertolino A, Mucci A, Bucci P, Rucci P, Gibertoni D, Aguglia E, Amore M, Blasi G, Comparelli A, Di Giannantonio M, Goracci A, Marchesi C, Monteleone P, Montemagni C, Pinna F, Roncone R, Siracusano A, Stratta P, Torti MC, Vita A, Zeppegno P, Chieffi M, Maj M, Italian Network For Research on Psychoses. Pathways to functional outcome in subjects with schizophrenia living in the community and their unaffected first-degree relatives. Schizophr Res. 2016;175(1–3):154–60. https://doi.org/10.1016/j.schres.2016.04.043.

    Article  PubMed  Google Scholar 

  70. Mucci A, Merlotti E, Ucok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: concepts, assessments and neurobiological bases. Schizophr Res. 2017;186:19–28. https://doi.org/10.1016/j.schres.2016.05.014.

    Article  PubMed  Google Scholar 

  71. Marder SR, Galderisi S. The current conceptualization of negative symptoms in schizophrenia. World Psychiatry. 2017;16(1):14–24. https://doi.org/10.1002/wps.20385.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Strauss GP, Cohen AS. A transdiagnostic review of negative symptom phenomenology and etiology. Schizophr Bull. 2017;43(4):712–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Messinger JW, Tremeau F, Antonius D, Mendelsohn E, Prudent V, Stanford AD, Malaspina D. Avolition and expressive deficits capture negative symptom phenomenology: implications for DSM-5 and schizophrenia research. Clin Psychol Rev. 2011;31(1):161–8. https://doi.org/10.1016/j.cpr.2010.09.002.

    Article  PubMed  Google Scholar 

  74. Kirkpatrick B, Galderisi S. Deficit schizophrenia: an update. World Psychiatry. 2008;7(3):143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kirschner M, Aleman A, Kaiser S. Secondary negative symptoms - a review of mechanisms, assessment and treatment. Schizophr Res. 2017;186:29–38. https://doi.org/10.1016/j.schres.2016.05.003.

    Article  PubMed  Google Scholar 

  76. Kimhy D, Yale S, Goetz RR, McFarr LM, Malaspina D. The factorial structure of the schedule for the deficit syndrome in schizophrenia. Schizophr Bull. 2006;32(2):274–8. https://doi.org/10.1093/schbul/sbi064.

    Article  PubMed  Google Scholar 

  77. Kirkpatrick B. Recognizing primary vs secondary negative symptoms and apathy vs expression domains. J Clin Psychiatry. 2014;75(4):e09. https://doi.org/10.4088/JCP.13049tx3c.

    Article  PubMed  Google Scholar 

  78. Kirkpatrick B. Developing concepts in negative symptoms: primary vs secondary and apathy vs expression. J Clin Psychiatry. 2014;75(Suppl 1):3–7. https://doi.org/10.4088/JCP.13049su1c.01.

    Article  PubMed  Google Scholar 

  79. Mucci A, Dima D, Soricelli A, Volpe U, Bucci P, Frangou S, Prinster A, Salvatore M, Galderisi S, Maj M. Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychol Med. 2015;45(8):1765–78. https://doi.org/10.1017/S0033291714002943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kirschner M, Hager OM, Bischof M, Hartmann MN, Kluge A, Seifritz E, Tobler PN, Kaiser S. Ventral striatal hypoactivation is associated with apathy but not diminished expression in patients with schizophrenia. J Psychiatry Neurosci. 2016;41(3):152–61.

    Article  PubMed  Google Scholar 

  81. Kraepelin E.Dementia praecox and paraphrenia. In: Robertson GM, editor. Transcribed by Barclay RM. Edinburgh: E. & S.Livingstone; 1919.

    Google Scholar 

  82. Liddle PF. Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol Med. 1987;17(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  83. Liddle PF. Syndromes of schizophrenia on factor analysis. Br J Psychiatry. 1992;161:861.

    Article  CAS  PubMed  Google Scholar 

  84. Volpe U, Mucci A, Quarantelli M, Galderisi S, Maj M. Dorsolateral prefrontal cortex volume in patients with deficit or nondeficit schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(2):264–9.

    Article  PubMed  Google Scholar 

  85. Buchanan RW, Breier A, Kirkpatrick B, Elkashef A, Munson RC, Gellad F, Carpenter WT Jr. Structural abnormalities in deficit and nondeficit schizophrenia. Am J Psychiatry. 1993;150(1):59–65. https://doi.org/10.1176/ajp.150.1.59.

    Article  CAS  PubMed  Google Scholar 

  86. Galderisi S, Quarantelli M, Volpe U, Mucci A, Cassano GB, Invernizzi G, Rossi A, Vita A, Pini S, Cassano P, Daneluzzo E, De Peri L, Stratta P, Brunetti A, Maj M. Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull. 2008;34(2):393–401. https://doi.org/10.1093/schbul/sbm097.

    Article  PubMed  Google Scholar 

  87. Cascella NG, Testa SM, Meyer SM, Rao VA, Diaz-Asper CM, Pearlson GD, Schretlen DJ. Neuropsychological impairment in deficit vs. non-deficit schizophrenia. J Psychiatr Res. 2008;42(11):930–7. https://doi.org/10.1016/j.jpsychires.2007.10.002.

    Article  PubMed  Google Scholar 

  88. Hovington CL, Lepage M. Neurocognition and neuroimaging of persistent negative symptoms of schizophrenia. Expert Rev Neurother. 2012;12(1):53–69. https://doi.org/10.1586/ern.11.173.

    Article  PubMed  Google Scholar 

  89. Hovington CL, Bodnar M, Chakravarty MM, Joober R, Malla AK, Lepage M. Investigation of white matter abnormalities in first episode psychosis patients with persistent negative symptoms. Psychiatry Res. 2015;233(3):402–8. https://doi.org/10.1016/j.pscychresns.2015.06.017.

    Article  PubMed  Google Scholar 

  90. Strauss GP, Horan WP, Kirkpatrick B, Fischer BA, Keller WR, Miski P, Buchanan RW, Green MF, Carpenter WT Jr. Deconstructing negative symptoms of schizophrenia: avolition-apathy and diminished expression clusters predict clinical presentation and functional outcome. J Psychiatr Res. 2013;47(6):783–90. https://doi.org/10.1016/j.jpsychires.2013.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sayers SL, Bellack AS, Mueser KT, Tierney AM, Wade JH, Morrison RL. Family interactions of schizophrenic and schizoaffective patients: determinants of relatives’ negativity. Psychiatry Res. 1995;56(2):121–34.

    Article  CAS  PubMed  Google Scholar 

  92. Green MF, Hellemann G, Horan WP, Lee J, Wynn JK. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Arch Gen Psychiatry. 2012;69(12):1216–24. https://doi.org/10.1001/archgenpsychiatry.2012.652.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Foussias G, Mann S, Zakzanis KK, van Reekum R, Remington G. Motivational deficits as the central link to functioning in schizophrenia: a pilot study. Schizophr Res. 2009;115(2–3):333–7. https://doi.org/10.1016/j.schres.2009.09.020.

    Article  CAS  PubMed  Google Scholar 

  94. Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull. 2010;36(2):359–69. https://doi.org/10.1093/schbul/sbn094.

    Article  PubMed  Google Scholar 

  95. Foussias G, Siddiqui I, Fervaha G, Mann S, McDonald K, Agid O, Zakzanis KK, Remington G. Motivated to do well: an examination of the relationships between motivation, effort, and cognitive performance in schizophrenia. Schizophr Res. 2015;166(1–3):276–82. https://doi.org/10.1016/j.schres.2015.05.019.

    Article  CAS  PubMed  Google Scholar 

  96. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull. 2010;36(5):919–34. https://doi.org/10.1093/schbul/sbq068.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yazbek H, Raffard S, Del-Monte J, Pupier F, Larue A, Boulenger JP, Gely-Nargeot MC, Capdevielle D. The clinic of apathy in schizophrenia: a critical review of the issue. L'Encéphale. 2014;40(3):231–9. https://doi.org/10.1016/j.encep.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  98. Fervaha G, Foussias G, Agid O, Remington G. Motivational deficits in early schizophrenia: prevalent, persistent, and key determinants of functional outcome. Schizophr Res. 2015;166(1–3):9–16. https://doi.org/10.1016/j.schres.2015.04.040.

    Article  PubMed  Google Scholar 

  99. Fervaha G, Foussias G, Takeuchi H, Agid O, Remington G. Measuring motivation in people with schizophrenia. Schizophr Res. 2015;169(1–3):423–6. https://doi.org/10.1016/j.schres.2015.09.012.

    Article  PubMed  Google Scholar 

  100. Strauss GP, Whearty KM, Morra LF, Sullivan SK, Ossenfort KL, Frost KH. Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a Progressive Ratio task. Schizophr Res. 2016;170(1):198–204. https://doi.org/10.1016/j.schres.2015.12.006.

    Article  PubMed  Google Scholar 

  101. Gard DE, Kring AM, Gard MG, Horan WP, Green MF. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res. 2007;93(1–3):253–60. https://doi.org/10.1016/j.schres.2007.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Heerey EA, Gold JM. Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. J Abnorm Psychol. 2007;116(2):268–78. https://doi.org/10.1037/0021-843X.116.2.268.

    Article  PubMed  Google Scholar 

  103. Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Cogn Neuropsychiatry. 2007;12(3):213–21. https://doi.org/10.1080/13546800601005900.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mann CL, Footer O, Chung YS, Driscoll LL, Barch DM. Spared and impaired aspects of motivated cognitive control in schizophrenia. J Abnorm Psychol. 2013;122(3):745–55. https://doi.org/10.1037/a0033069.

    Article  PubMed  Google Scholar 

  105. Strauss GP, Waltz JA, Gold JM. A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull. 2014;40(Suppl 2):S107–16. https://doi.org/10.1093/schbul/sbt197.

    Article  PubMed  Google Scholar 

  106. Barch DM, Pagliaccio D, Luking K. Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci. 2016;27:411–49. https://doi.org/10.1007/7854_2015_376.

    Article  PubMed  Google Scholar 

  107. Roth RM, Flashman LA, Saykin AJ, McAllister TW, Vidaver R. Apathy in schizophrenia: reduced frontal lobe volume and neuropsychological deficits. Am J Psychiatry. 2004;161(1):157–9. https://doi.org/10.1176/appi.ajp.161.1.157.

    Article  PubMed  Google Scholar 

  108. Chuang JY, Murray GK, Metastasio A, Segarra N, Tait R, Spencer J, Ziauddeen H, Dudas RB, Fletcher PC, Suckling J. Brain structural signatures of negative symptoms in depression and schizophrenia. Front Psychiatry. 2014;5:116. https://doi.org/10.3389/fpsyt.2014.00116.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Morch-Johnsen L, Nesvag R, Faerden A, Haukvik UK, Jorgensen KN, Lange EH, Andreassen OA, Melle I, Agartz I. Brain structure abnormalities in first-episode psychosis patients with persistent apathy. Schizophr Res. 2015;164(1–3):59–64. https://doi.org/10.1016/j.schres.2015.03.001.

    Article  PubMed  Google Scholar 

  110. Roth RM, Garlinghouse MA, Flashman LA, Koven NS, Pendergrass JC, Ford JC, McAllister TW, Saykin AJ. Apathy is associated with ventral striatum volume in schizophrenia spectrum disorder. J Neuropsychiatr Clin Neurosci. 2016;28(3):191–4. https://doi.org/10.1176/appi.neuropsych.15100241.

    Article  Google Scholar 

  111. Caravaggio F, Fervaha G, Menon M, Remington G, Graff-Guerrero A, Gerretsen P. The neural correlates of apathy in schizophrenia: an exploratory investigation. Neuropsychologia. 2017; https://doi.org/10.1016/j.neuropsychologia.2017.10.027.

    Article  PubMed  Google Scholar 

  112. Nakamura K, Kawasaki Y, Takahashi T, Furuichi A, Noguchi K, Seto H, Suzuki M. Reduced white matter fractional anisotropy and clinical symptoms in schizophrenia: a voxel-based diffusion tensor imaging study. Psychiatry Res. 2012;202(3):233–8. https://doi.org/10.1016/j.pscychresns.2011.09.006.

    Article  PubMed  Google Scholar 

  113. Ohtani T, Bouix S, Hosokawa T, Saito Y, Eckbo R, Ballinger T, Rausch A, Melonakos E, Kubicki M. Abnormalities in white matter connections between orbitofrontal cortex and anterior cingulate cortex and their associations with negative symptoms in schizophrenia: a DTI study. Schizophr Res. 2014;157(1–3):190–7. https://doi.org/10.1016/j.schres.2014.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Asami T, Hyuk Lee S, Bouix S, Rathi Y, Whitford TJ, Niznikiewicz M, Nestor P, McCarley RW, Shenton ME, Kubicki M. Cerebral white matter abnormalities and their associations with negative but not positive symptoms of schizophrenia. Psychiatry Res. 2014;222(1–2):52–9. https://doi.org/10.1016/j.pscychresns.2014.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ohtani T, Bouix S, Lyall AE, Hosokawa T, Saito Y, Melonakos E, Westin CF, Seidman LJ, Goldstein J, Mesholam-Gately R, Petryshen T, Wojcik J, Kubicki M. Abnormal white matter connections between medial frontal regions predict symptoms in patients with first episode schizophrenia. Cortex. 2015;71:264–76. https://doi.org/10.1016/j.cortex.2015.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Amodio A, Quarantelli M, Mucci A, Prinster A, Soricelli A, Vignapiano A, Giordano GM, Merlotti E, Nicita A, Galderisi S. Avolition-apathy and white matter connectivity in schizophrenia: reduced fractional anisotropy between amygdala and insular cortex. Clin EEG Neurosci. 2018;49(1):55–65. https://doi.org/10.1177/1550059417745934.

    Article  PubMed  Google Scholar 

  117. Waltz JA, Schweitzer JB, Ross TJ, Kurup PK, Salmeron BJ, Rose EJ, Gold JM, Stein EA. Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology. 2010;35(12):2427–39. https://doi.org/10.1038/npp.2010.126.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Simon JJ, Biller A, Walther S, Roesch-Ely D, Stippich C, Weisbrod M, Kaiser S. Neural correlates of reward processing in schizophrenia--relationship to apathy and depression. Schizophr Res. 2010;118(1–3):154–61. https://doi.org/10.1016/j.schres.2009.11.007.

    Article  PubMed  Google Scholar 

  119. Wolf DH, Satterthwaite TD, Kantrowitz JJ, Katchmar N, Vandekar L, Elliott MA, Ruparel K. Amotivation in schizophrenia: integrated assessment with behavioral, clinical, and imaging measures. Schizophr Bull. 2014;40(6):1328–37. https://doi.org/10.1093/schbul/sbu026.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Morris RW, Quail S, Griffiths KR, Green MJ, Balleine BW. Corticostriatal control of goal-directed action is impaired in schizophrenia. Biol Psychiatry. 2015;77(2):187–95. https://doi.org/10.1016/j.biopsych.2014.06.005.

    Article  PubMed  Google Scholar 

  121. Simon JJ, Cordeiro SA, Weber MA, Friederich HC, Wolf RC, Weisbrod M, Kaiser S. Reward system dysfunction as a neural substrate of symptom expression across the general population and patients with schizophrenia. Schizophr Bull. 2015;41(6):1370–8. https://doi.org/10.1093/schbul/sbv067.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chung YS, Barch DM. Frontal-striatum dysfunction during reward processing: relationships to amotivation in schizophrenia. J Abnorm Psychol. 2016;125(3):453–69. https://doi.org/10.1037/abn0000137.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nielsen MO, Rostrup E, Wulff S, Bak N, Lublin H, Kapur S, Glenthoj B. Alterations of the brain reward system in antipsychotic naive schizophrenia patients. Biol Psychiatry. 2012;71(10):898–905. https://doi.org/10.1016/j.biopsych.2012.02.007.

    Article  PubMed  Google Scholar 

  124. Esslinger C, Englisch S, Inta D, Rausch F, Schirmbeck F, Mier D, Kirsch P, Meyer-Lindenberg A, Zink M. Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophr Res. 2012;140(1–3):114–21. https://doi.org/10.1016/j.schres.2012.06.025.

    Article  PubMed  Google Scholar 

  125. Wotruba D, Heekeren K, Michels L, Buechler R, Simon JJ, Theodoridou A, Kollias S, Rossler W, Kaiser S. Symptom dimensions are associated with reward processing in unmedicated persons at risk for psychosis. Front Behav Neurosci. 2014;8:382. https://doi.org/10.3389/fnbeh.2014.00382.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schmidt A, Palaniyappan L, Smieskova R, Simon A, Riecher-Rossler A, Lang UE, Fusar-Poli P, McGuire P, Borgwardt SJ. Dysfunctional insular connectivity during reward prediction in patients with first-episode psychosis. J Psychiatry Neurosci. 2016;41(6):367–76. https://doi.org/10.1503/jpn.150234.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dowd EC, Barch DM. Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators. Biol Psychiatry. 2010;67(10):902–11. https://doi.org/10.1016/j.biopsych.2009.10.020.

    Article  PubMed  Google Scholar 

  128. Dowd EC, Barch DM. Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia. PLoS One. 2012;7(5):e35622. https://doi.org/10.1371/journal.pone.0035622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Harvey PO, Armony J, Malla A, Lepage M. Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res. 2010;44(11):707–16. https://doi.org/10.1016/j.jpsychires.2009.12.008.

    Article  PubMed  Google Scholar 

  130. Lee JS, Han K, Lee SK, Seok JH, Kim JJ. Altered structural connectivity and trait anhedonia in patients with schizophrenia. Neurosci Lett. 2014;579:7–11. https://doi.org/10.1016/j.neulet.2014.07.001.

    Article  CAS  PubMed  Google Scholar 

  131. Park IH, Chun JW, Park HJ, Koo MS, Park S, Kim SH, Kim JJ. Altered cingulo-striatal function underlies reward drive deficits in schizophrenia. Schizophr Res. 2015;161(2–3):229–36. https://doi.org/10.1016/j.schres.2014.11.005.

    Article  PubMed  Google Scholar 

  132. Wang Y, Liu WH, Li Z, Wei XH, Jiang XQ, Geng FL, Zou LQ, Lui SS, Cheung EF, Pantelis C, Chan RC. Altered corticostriatal functional connectivity in individuals with high social anhedonia. Psychol Med. 2016;46(1):125–35. https://doi.org/10.1017/S0033291715001592.

    Article  CAS  PubMed  Google Scholar 

  133. Galderisi S, Mucci A, Buchanan RW, Arango C. Negative symptoms of schizophrenia: new developments and unanswered research questions. Lancet Psychiatry. 2017;5:664–77.

    Article  Google Scholar 

  134. Stip E, Fahim C, Liddle P, Mancini-Marie A, Mensour B, Bentaleb LA, Beauregard M. Neural correlates of sad feelings in schizophrenia with and without blunted affect. Can J Psychiatr. 2005;50(14):909–17. https://doi.org/10.1177/070674370505001405.

    Article  Google Scholar 

  135. Gur RE, Loughead J, Kohler CG, Elliott MA, Lesko K, Ruparel K, Wolf DH, Bilker WB, Gur RC. Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Arch Gen Psychiatry. 2007;64(12):1356–66. https://doi.org/10.1001/archpsyc.64.12.1356.

    Article  PubMed  Google Scholar 

  136. Lepage M, Sergerie K, Benoit A, Czechowska Y, Dickie E, Armony JL. Emotional face processing and flat affect in schizophrenia: functional and structural neural correlates. Psychol Med. 2011;41(9):1833–44. https://doi.org/10.1017/S0033291711000031.

    Article  CAS  PubMed  Google Scholar 

  137. Lee JS, Chun JW, Yoon SY, Park HJ, Kim JJ. Involvement of the mirror neuron system in blunted affect in schizophrenia. Schizophr Res. 2014;152(1):268–74. https://doi.org/10.1016/j.schres.2013.10.043.

    Article  PubMed  Google Scholar 

  138. Hager OM, Kirschner M, Bischof M, Hartmann-Riemer MN, Kluge A, Seifritz E, Tobler PN, Kaiser S. Reward-dependent modulation of working memory is associated with negative symptoms in schizophrenia. Schizophr Res. 2015;168(1–2):238–44. https://doi.org/10.1016/j.schres.2015.08.024.

    Article  PubMed  Google Scholar 

  139. Rahm C, Liberg B, Reckless G, Ousdal O, Melle I, Andreassen OA, Agartz I. Negative symptoms in schizophrenia show association with amygdala volumes and neural activation during affective processing. Acta Neuropsychiatr. 2015;27(4):213–20. https://doi.org/10.1017/neu.2015.11.

    Article  PubMed  Google Scholar 

  140. Lindner C, Dannlowski U, Bauer J, Ohrmann P, Lencer R, Zwitserlood P, Kugel H, Suslow T. Affective flattening in patients with schizophrenia: differential association with amygdala response to threat-related facial expression under automatic and controlled processing conditions. Psychiatry Investig. 2016;13(1):102–11. https://doi.org/10.4306/pi.2016.13.1.102.

    Article  PubMed  Google Scholar 

  141. Peralta V, Moreno-Izco L, Sanchez-Torres A, Garcia de Jalon E, Campos MS, Cuesta MJ. Characterization of the deficit syndrome in drug-naive schizophrenia patients: the role of spontaneous movement disorders and neurological soft signs. Schizophr Bull. 2014;40(1):214–24. https://doi.org/10.1093/schbul/sbs152.

    Article  PubMed  Google Scholar 

  142. Cohen AS, Mitchell KR, Elvevag B. What do we really know about blunted vocal affect and alogia? A meta-analysis of objective assessments. Schizophr Res. 2014;159(2–3):533–8. https://doi.org/10.1016/j.schres.2014.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kupper Z, Ramseyer F, Hoffmann H, Kalbermatten S, Tschacher W. Video-based quantification of body movement during social interaction indicates the severity of negative symptoms in patients with schizophrenia. Schizophr Res. 2010;121(1–3):90–100. https://doi.org/10.1016/j.schres.2010.03.032.

    Article  PubMed  Google Scholar 

  144. Bleuler E. Dementia praecox or the group of schizophrenias. Zinkin J, trans. New York: International Universities Press; 1950.

    Google Scholar 

  145. Hardy-Bayle MC, Sarfati Y, Passerieux C. The cognitive basis of disorganization symptomatology in schizophrenia and its clinical correlates: toward a pathogenetic approach to disorganization. Schizophr Bull. 2003;29(3):459–71.

    Article  PubMed  Google Scholar 

  146. Cohen AS, Le TP, Fedechko TL, Elvevag B. Can RDoC help find order in thought disorder? Schizophr Bull. 2017;43(3):503–8. https://doi.org/10.1093/schbul/sbx030.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hart M, Lewine RR. Rethinking thought disorder. Schizophr Bull. 2017; https://doi.org/10.1093/schbul/sbx003.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Peralta V, Cuesta MJ, de Leon J. Formal thought disorder in schizophrenia: a factor analytic study. Compr Psychiatry. 1992;33(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  149. Andreasen NC, Arndt S, Miller D, Flaum M, Nopoulos P. Correlational studies of the scale for the assessment of negative symptoms and the scale for the assessment of positive symptoms: an overview and update. Psychopathology. 1995;28(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  150. Arndt S, Andreasen NC, Flaum M, Miller D, Nopoulos P. A longitudinal study of symptom dimensions in schizophrenia. Prediction and patterns of change. Arch Gen Psychiatry. 1995;52(5):352–60.

    Article  CAS  PubMed  Google Scholar 

  151. Bell MD, Lysaker PH, Milstein RM, Beam-Goulet JL. Concurrent validity of the cognitive component of schizophrenia: relationship of PANSS scores to neuropsychological assessments. Psychiatry Res. 1994;54(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  152. Mass R, Schoemig T, Hitschfeld K, Wall E, Haasen C. Psychopathological syndromes of schizophrenia: evaluation of the dimensional structure of the positive and negative syndrome scale. Schizophr Bull. 2000;26(1):167–77.

    Article  CAS  PubMed  Google Scholar 

  153. Emsley R, Rabinowitz J, Torreman M, RIS-INT-35 Early Psychosis Global Working Group. The factor structure for the Positive and Negative Syndrome Scale (PANSS) in recent-onset psychosis. Schizophr Res. 2003;61(1):47–57.

    Article  PubMed  Google Scholar 

  154. Cuesta MJ, Ugarte MD, Goicoa T, Eraso S, Peralta V. A taxometric analysis of schizophrenia symptoms. Psychiatry Res. 2007;150(3):245–53. https://doi.org/10.1016/j.psychres.2006.01.019.

    Article  PubMed  Google Scholar 

  155. Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res. 2012;137(1–3):246–50. https://doi.org/10.1016/j.schres.2012.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Minor KS, Cohen AS. Affective reactivity of speech disturbances in schizotypy. J Psychiatr Res. 2010;44(2):99–105. https://doi.org/10.1016/j.jpsychires.2009.06.005.

    Article  PubMed  Google Scholar 

  157. Minor KS, Marggraf MP, Davis BJ, Mehdiyoun NF, Breier A. Affective systems induce formal thought disorder in early-stage psychosis. J Abnorm Psychol. 2016;125(4):537–42. https://doi.org/10.1037/abn0000156.

    Article  PubMed  Google Scholar 

  158. Bearden CE, Karlsgodt KH, Bachman P, van Erp TG, Winkler AM, Glahn DC. Genetic architecture of declarative memory: implications for complex illnesses. Neuroscientist. 2012;18(5):516–32. https://doi.org/10.1177/1073858411415113.

    Article  CAS  PubMed  Google Scholar 

  159. Andreasen NC. Thought, language, and communication disorders. I. Clinical assessment, definition of terms, and evaluation of their reliability. Arch Gen Psychiatry. 1979;36(12):1315–21.

    Article  CAS  PubMed  Google Scholar 

  160. Andreasen NC. Thought, language, and communication disorders. II Diagnostic significance. Arch Gen Psychiatry. 1979;36(12):1325–30.

    Article  CAS  PubMed  Google Scholar 

  161. Cuesta MJ, Peralta V. Testing the hypothesis that formal thought disorders are severe mood disorders. Schizophr Bull. 2011;37(6):1136–46. https://doi.org/10.1093/schbul/sbr092.

    Article  PubMed  PubMed Central  Google Scholar 

  162. DeLisi LE. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr Bull. 2001;27(3):481–96.

    Article  CAS  PubMed  Google Scholar 

  163. Roche E, Creed L, MacMahon D, Brennan D, Clarke M. The epidemiology and associated phenomenology of formal thought disorder: a systematic review. Schizophr Bull. 2015;41(4):951–62. https://doi.org/10.1093/schbul/sbu129.

    Article  PubMed  Google Scholar 

  164. Levy DL, Coleman MJ, Sung H, Ji F, Matthysse S, Mendell NR, Titone D. The genetic basis of thought disorder and language and communication disturbances in schizophrenia. J Neurolinguistics. 2010;23(3):176. https://doi.org/10.1016/j.jneuroling.2009.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liddle PF, Barnes TR. Syndromes of chronic schizophrenia. Br J Psychiatry. 1990;157:558–61.

    Article  CAS  PubMed  Google Scholar 

  166. Andreasen NC, Grove WM. Thought, language, and communication in schizophrenia: diagnosis and prognosis. Schizophr Bull. 1986;12(3):348–59.

    Article  CAS  PubMed  Google Scholar 

  167. Chaika EO. Understanding psychotic speech: beyond freud and chomsky. Springfield: Thompsoon; 1990.

    Google Scholar 

  168. Lott PR, Guggenbuhl S, Schneeberger A, Pulver AE, Stassen HH. Linguistic analysis of the speech output of schizophrenic, bipolar, and depressive patients. Psychopathology. 2002;35(4):220–7. https://doi.org/10.1159/000063831.

    Article  CAS  PubMed  Google Scholar 

  169. Tan EJ, Rossell SL. Disorganised schizotypy is selectively associated with poorer semantic processing in non-clinical individuals. Psychiatry Res. 2017;256:249–52. https://doi.org/10.1016/j.psychres.2017.06.067.

    Article  PubMed  Google Scholar 

  170. Shenton ME, Kikinis R, Jolesz FA, Pollak SD, LeMay M, Wible CG, Hokama H, Martin J, Metcalf D, Coleman M, et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med. 1992;327(9):604–12. https://doi.org/10.1056/NEJM199208273270905.

    Article  CAS  PubMed  Google Scholar 

  171. Rossi A, Serio A, Stratta P, Petruzzi C, Schiazza G, Mancini F, Casacchia M. Planum temporale asymmetry and thought disorder in schizophrenia. Schizophr Res. 1994;12(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  172. Vita A, Dieci M, Giobbio GM, Caputo A, Ghiringhelli L, Comazzi M, Garbarini M, Mendini AP, Morganti C, Tenconi F, et al. Language and thought disorder in schizophrenia: brain morphological correlates. Schizophr Res. 1995;15(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  173. Menon RR, Barta PE, Aylward EH, Richards SS, Vaughn DD, Tien AY, Harris GJ, Pearlson GD. Posterior superior temporal gyrus in schizophrenia: grey matter changes and clinical correlates. Schizophr Res. 1995;16(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  174. Petty RG, Barta PE, Pearlson GD, McGilchrist IK, Lewis RW, Tien AY, Pulver A, Vaughn DD, Casanova MF, Powers RE. Reversal of asymmetry of the planum temporale in schizophrenia. Am J Psychiatry. 1995;152(5):715–21. https://doi.org/10.1176/ajp.152.5.715.

    Article  CAS  PubMed  Google Scholar 

  175. Levitt JJ, McCarley RW, Nestor PG, Petrescu C, Donnino R, Hirayasu Y, Kikinis R, Jolesz FA, Shenton ME. Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia: clinical and cognitive correlates. Am J Psychiatry. 1999;156(7):1105–7. https://doi.org/10.1176/ajp.156.7.1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Holinger DP, Shenton ME, Wible CG, Donnino R, Kikinis R, Jolesz FA, McCarley RW. Superior temporal gyrus volume abnormalities and thought disorder in left-handed schizophrenic men. Am J Psychiatry. 1999;156(11):1730–5. https://doi.org/10.1176/ajp.156.11.1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rajarethinam RP, DeQuardo JR, Nalepa R, Tandon R. Superior temporal gyrus in schizophrenia: a volumetric magnetic resonance imaging study. Schizophr Res. 2000;41(2):303–12.

    Article  CAS  PubMed  Google Scholar 

  178. Rajarethinam R, DeQuardo JR, Miedler J, Arndt S, Kirbat R, Brunberg JA, Tandon R. Hippocampus and amygdala in schizophrenia: assessment of the relationship of neuroanatomy to psychopathology. Psychiatry Res. 2001;108(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  179. Kircher TT, Liddle PF, Brammer MJ, Williams SC, Murray RM, McGuire PK. Neural correlates of formal thought disorder in schizophrenia: preliminary findings from a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58(8):769–74.

    Article  CAS  PubMed  Google Scholar 

  180. Matsumoto H, Simmons A, Williams S, Hadjulis M, Pipe R, Murray R, Frangou S. Superior temporal gyrus abnormalities in early-onset schizophrenia: similarities and differences with adult-onset schizophrenia. Am J Psychiatry. 2001;158(8):1299–304. https://doi.org/10.1176/appi.ajp.158.8.1299.

    Article  CAS  PubMed  Google Scholar 

  181. Subotnik KL, Bartzokis G, Green MF, Nuechterlein KH. Neuroanatomical correlates of formal thought disorder in schizophrenia. Cogn Neuropsychiatry. 2003;8(2):81–8. https://doi.org/10.1080/13546800244000148.

    Article  PubMed  Google Scholar 

  182. Yamasue H, Iwanami A, Hirayasu Y, Yamada H, Abe O, Kuroki N, Fukuda R, Tsujii K, Aoki S, Ohtomo K, Kato N, Kasai K. Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res. 2004;131(3):195–207. https://doi.org/10.1016/j.pscychresns.2004.05.004.

    Article  PubMed  Google Scholar 

  183. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res. 2006;83(2–3):155–71. https://doi.org/10.1016/j.schres.2005.11.020.

    Article  PubMed  Google Scholar 

  184. Weinstein S, Woodward TS, Ngan ET. Brain activation mediates the association between structural abnormality and symptom severity in schizophrenia. NeuroImage. 2007;36(1):188–93. https://doi.org/10.1016/j.neuroimage.2007.02.030.

    Article  PubMed  Google Scholar 

  185. Suga M, Yamasue H, Abe O, Yamasaki S, Yamada H, Inoue H, Takei K, Aoki S, Kasai K. Reduced gray matter volume of Brodmann’s Area 45 is associated with severe psychotic symptoms in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2010;260(6):465–73. https://doi.org/10.1007/s00406-009-0094-1.

    Article  PubMed  Google Scholar 

  186. Horn H, Federspiel A, Wirth M, Muller TJ, Wiest R, Walther S, Strik W. Gray matter volume differences specific to formal thought disorder in schizophrenia. Psychiatry Res. 2010;182(2):183–6. https://doi.org/10.1016/j.pscychresns.2010.01.016.

    Article  PubMed  Google Scholar 

  187. Kuhn S, Romanowski A, Schubert F, Gallinat J. Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct. 2012;217(2):523–9. https://doi.org/10.1007/s00429-011-0365-2.

    Article  CAS  PubMed  Google Scholar 

  188. Horn H, Jann K, Federspiel A, Walther S, Wiest R, Muller T, Strik W. Semantic network disconnection in formal thought disorder. Neuropsychobiology. 2012;66(1):14–23. https://doi.org/10.1159/000337133.

    Article  PubMed  Google Scholar 

  189. Sans-Sansa B, McKenna PJ, Canales-Rodriguez EJ, Ortiz-Gil J, Lopez-Araquistain L, Sarro S, Duenas RM, Blanch J, Salvador R, Pomarol-Clotet E. Association of formal thought disorder in schizophrenia with structural brain abnormalities in language-related cortical regions. Schizophr Res. 2013;146(1–3):308–13. https://doi.org/10.1016/j.schres.2013.02.032.

    Article  CAS  PubMed  Google Scholar 

  190. Palaniyappan L, Mahmood J, Balain V, Mougin O, Gowland PA, Liddle PF. Structural correlates of formal thought disorder in schizophrenia: an ultra-high field multivariate morphometry study. Schizophr Res. 2015;168(1–2):305–12. https://doi.org/10.1016/j.schres.2015.07.022.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Asami T, Saito Y, Whitford TJ, Makris N, Niznikiewicz M, McCarley RW, Shenton ME, Kubicki M. Abnormalities of middle longitudinal fascicle and disorganization in patients with schizophrenia. Schizophr Res. 2013;143(2–3):253–9. https://doi.org/10.1016/j.schres.2012.11.030.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bopp MHA, Zollner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: a diffusion tensor imaging study. Schizophr Res. 2017;184:59–68. https://doi.org/10.1016/j.schres.2016.11.045.

    Article  PubMed  Google Scholar 

  193. Zhou Y, Liu J, Driesen N, Womer F, Chen K, Wang Y, Jiang X, Zhou Q, Bai C, Wang D, Tang Y, Wang F. White matter integrity in genetic high-risk individuals and first-episode schizophrenia patients: similarities and disassociations. Biomed Res Int. 2017;2017:3107845. https://doi.org/10.1155/2017/3107845.

    Article  PubMed  PubMed Central  Google Scholar 

  194. McGuire PK, Quested DJ, Spence SA, Murray RM, Frith CD, Liddle PF. Pathophysiology of ‘positive’ thought disorder in schizophrenia. Br J Psychiatry. 1998;173:231–5.

    Article  CAS  PubMed  Google Scholar 

  195. Kircher TT, Bulimore ET, Brammer MJ, Williams SC, Broome MR, Murray RM, McGuire PK. Differential activation of temporal cortex during sentence completion in schizophrenic patients with and without formal thought disorder. Schizophr Res. 2001;50(1–2):27–40.

    Article  CAS  PubMed  Google Scholar 

  196. Kircher TT, Liddle PF, Brammer MJ, Williams SC, Murray RM, McGuire PK. Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychol Med. 2002;32(3):439–49.

    Article  CAS  PubMed  Google Scholar 

  197. Assaf M, Rivkin PR, Kuzu CH, Calhoun VD, Kraut MA, Groth KM, Yassa MA, Hart J Jr, Pearlson GD. Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia. Biol Psychiatry. 2006;59(5):452–9. https://doi.org/10.1016/j.biopsych.2005.07.039.

    Article  PubMed  Google Scholar 

  198. Kuperberg GR, Deckersbach T, Holt DJ, Goff D, West WC. Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Arch Gen Psychiatry. 2007;64(2):138–51. https://doi.org/10.1001/archpsyc.64.2.138.

    Article  PubMed  Google Scholar 

  199. Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME, McCarley RW. Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain. 2008;131(Pt 1):180–95. https://doi.org/10.1093/brain/awm265.

    Article  PubMed  Google Scholar 

  200. Kircher T, Whitney C, Krings T, Huber W, Weis S. Hippocampal dysfunction during free word association in male patients with schizophrenia. Schizophr Res. 2008;101(1–3):242–55. https://doi.org/10.1016/j.schres.2008.02.003.

    Article  PubMed  Google Scholar 

  201. Arcuri SM, Broome MR, Giampietro V, Amaro E Jr, Kircher TT, Williams SC, Andrew CM, Brammer M, Morris RG, McGuire PK. Faulty suppression of irrelevant material in patients with thought disorder linked to attenuated frontotemporal activation. Schizophr Res Treat. 2012;2012:176290. https://doi.org/10.1155/2012/176290.

    Article  CAS  Google Scholar 

  202. Chen PJ, Fan LY, Hwang TJ, Hwu HG, Liu CM, Chou TL. The deficits on a cortical-subcortical loop of meaning processing in schizophrenia. Neuroreport. 2013;24(3):147–51. https://doi.org/10.1097/WNR.0b013e32835df562.

    Article  PubMed  Google Scholar 

  203. Sass K, Heim S, Sachs O, Straube B, Schneider F, Habel U, Kircher T. Neural correlates of semantic associations in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2014;264(2):143–54. https://doi.org/10.1007/s00406-013-0425-0.

    Article  PubMed  Google Scholar 

  204. Niznikiewicz M, Donnino R, McCarley RW, Nestor PG, Iosifescu DV, O’Donnell B, Levitt J, Shenton ME. Abnormal angular gyrus asymmetry in schizophrenia. Am J Psychiatry. 2000;157(3):428–37. https://doi.org/10.1176/appi.ajp.157.3.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Makris N, Preti MG, Asami T, Pelavin P, Campbell B, Papadimitriou GM, Kaiser J, Baselli G, Westin CF, Shenton ME, Kubicki M. Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct. 2013;218(4):951–68. https://doi.org/10.1007/s00429-012-0441-2.

    Article  CAS  PubMed  Google Scholar 

  206. Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex. 2013;23(10):2347–56. https://doi.org/10.1093/cercor/bhs225.

    Article  PubMed  Google Scholar 

  207. Schmahmann JD, Pandya DN. The complex history of the fronto-occipital fasciculus. J Hist Neurosci. 2007;16(4):362–77. https://doi.org/10.1080/09647040600620468.

    Article  PubMed  Google Scholar 

  208. Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology. 1996;14(1):1–17. https://doi.org/10.1016/S0893-133X(96)80054-6.

    Article  CAS  PubMed  Google Scholar 

  209. Stirling J, Hellewell J, Blakey A, Deakin W. Thought disorder in schizophrenia is associated with both executive dysfunction and circumscribed impairments in semantic function. Psychol Med. 2006;36(4):475–84. https://doi.org/10.1017/S0033291705006884.

    Article  PubMed  Google Scholar 

  210. Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ. Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci. 1996;16(21):7055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hofer A, Weiss EM, Golaszewski SM, Siedentopf CM, Brinkhoff C, Kremser C, Felber S, Fleischhacker WW. Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: a functional MRI study. Am J Psychiatry. 2003;160(10):1802–8. https://doi.org/10.1176/appi.ajp.160.10.1802.

    Article  PubMed  Google Scholar 

  212. Crosson B, Hughes CW. Role of the thalamus in language: is it related to schizophrenic thought disorder? Schizophr Bull. 1987;13(4):605–21.

    Article  CAS  PubMed  Google Scholar 

  213. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44(7):660–9.

    Article  CAS  PubMed  Google Scholar 

  214. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, Bloomfield MA, Bressan RA, Buchanan RW, Carpenter WT, Castle DJ, Citrome L, Daskalakis ZJ, Davidson M, Drake RJ, Dursun S, Ebdrup BH, Elkis H, Falkai P, Fleischacker WW, Gadelha A, Gaughran F, Glenthoj BY, Graff-Guerrero A, Hallak JE, Honer WG, Kennedy J, Kinon BJ, Lawrie SM, Lee J, Leweke FM, MacCabe JH, McNabb CB, Meltzer H, Moller HJ, Nakajima S, Pantelis C, Reis Marques T, Remington G, Rossell SL, Russell BR, Siu CO, Suzuki T, Sommer IE, Taylor D, Thomas N, Ucok A, Umbricht D, Walters JT, Kane J, Correll CU. Treatment-resistant schizophrenia: treatment Response and Resistance in Psychosis (TRRIP) Working Group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174(3):216–29. https://doi.org/10.1176/appi.ajp.2016.16050503.

    Article  PubMed  Google Scholar 

  215. Homan P, Kindler J, Hauf M, Hubl D, Dierks T. Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry. 2012;2:e189. https://doi.org/10.1038/tp.2012.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38. https://doi.org/10.1038/nrn2787.

    Article  CAS  PubMed  Google Scholar 

  217. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23. https://doi.org/10.1176/appi.ajp.160.1.13.

    Article  PubMed  Google Scholar 

  218. Corlett PR, Taylor JR, Wang XJ, Fletcher PC, Krystal JH. Toward a neurobiology of delusions. Prog Neurobiol. 2010;92(3):345–69. https://doi.org/10.1016/j.pneurobio.2010.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Takahashi T, Suzuki M, Zhou SY, Tanino R, Hagino H, Niu L, Kawasaki Y, Seto H, Kurachi M. Temporal lobe gray matter in schizophrenia spectrum: a volumetric MRI study of the fusiform gyrus, parahippocampal gyrus, and middle and inferior temporal gyri. Schizophr Res. 2006;87(1–3):116–26. https://doi.org/10.1016/j.schres.2006.04.023.

    Article  PubMed  Google Scholar 

  220. Nestor PG, Onitsuka T, Gurrera RJ, Niznikiewicz M, Frumin M, Shenton ME, McCarley RW. Dissociable contributions of MRI volume reductions of superior temporal and fusiform gyri to symptoms and neuropsychology in schizophrenia. Schizophr Res. 2007;91(1–3):103–6. https://doi.org/10.1016/j.schres.2006.11.025.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Pankov A, Binney RJ, Staffaroni AM, Kornak J, Attygalle S, Schuff N, Weiner MW, Kramer JH, Dickerson BC, Miller BL, Rosen HJ. Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration. Neuroimage Clin. 2016;12:332–40. https://doi.org/10.1016/j.nicl.2015.08.002.

    Article  PubMed  Google Scholar 

  222. Pankow A, Knobel A, Voss M, Heinz A. Neurobiological correlates of delusion: beyond the salience attribution hypothesis. Neuropsychobiology. 2012;66(1):33–43. https://doi.org/10.1159/000337132.

    Article  PubMed  Google Scholar 

  223. Chen Q, Chen X, He X, Wang L, Wang K, Qiu B. Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia. Neurosci Lett. 2016;627:178–84. https://doi.org/10.1016/j.neulet.2016.05.035.

    Article  CAS  PubMed  Google Scholar 

  224. Thomas P, Mathur P, Gottesman II, Nagpal R, Nimgaonkar VL, Deshpande SN. Correlates of hallucinations in schizophrenia: a cross-cultural evaluation. Schizophr Res. 2007;92(1–3):41–9. https://doi.org/10.1016/j.schres.2007.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nayani TH, David AS. The auditory hallucination: a phenomenological survey. Psychol Med. 1996;26(1):177–89.

    Article  CAS  PubMed  Google Scholar 

  226. Rojcewicz SJ, Rojcewicz R. The “Human” voices in hallucinations. J Phenomenol Psychology. 1997;28(1):1–41. https://doi.org/10.1163/156916297X00013.

    Article  Google Scholar 

  227. Mackay CS. The hammer of witches: a complete translation of the malleus maleficarum. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  228. Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W. Activation of Heschl’s gyrus during auditory hallucinations. Neuron. 1999;22(3):615–21.

    Article  CAS  PubMed  Google Scholar 

  229. Lennox BR, Park SB, Jones PB, Morris PG. Spatial and temporal mapping of neural activity associated with auditory hallucinations. Lancet. 1999;353(9153):644.

    Article  CAS  PubMed  Google Scholar 

  230. Lennox BR, Park SB, Medley I, Morris PG, Jones PB. The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Res. 2000;100(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  231. Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry. 2000;57(11):1033–8.

    Article  CAS  PubMed  Google Scholar 

  232. Diederen KM, Neggers SF, Daalman K, Blom JD, Goekoop R, Kahn RS, Sommer IE. Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. Am J Psychiatry. 2010;167(4):427–35. https://doi.org/10.1176/appi.ajp.2009.09040456.

    Article  PubMed  Google Scholar 

  233. Diederen KM, Neggers SF, de Weijer AD, van Lutterveld R, Daalman K, Eickhoff SB, Clos M, Kahn RS, Sommer IE. Aberrant resting-state connectivity in non-psychotic individuals with auditory hallucinations. Psychol Med. 2013;43(8):1685–96. https://doi.org/10.1017/S0033291712002541.

    Article  CAS  PubMed  Google Scholar 

  234. Plaze M, Bartres-Faz D, Martinot JL, Januel D, Bellivier F, De Beaurepaire R, Chanraud S, Andoh J, Lefaucheur JP, Artiges E, Pallier C, Paillere-Martinot ML. Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophr Res. 2006;87(1–3):109–15. https://doi.org/10.1016/j.schres.2006.05.005.

    Article  PubMed  Google Scholar 

  235. Crespo-Facorro B, Kim J, Andreasen NC, O’Leary DS, Bockholt HJ, Magnotta V. Insular cortex abnormalities in schizophrenia: a structural magnetic resonance imaging study of first-episode patients. Schizophr Res. 2000;46(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  236. Shapleske J, Rossell SL, Simmons A, David AS, Woodruff PW. Are auditory hallucinations the consequence of abnormal cerebral lateralization? A morphometric MRI study of the sylvian fissure and planum temporale. Biol Psychiatry. 2001;49(8):685–93.

    Article  CAS  PubMed  Google Scholar 

  237. Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK, Frumin M, Kikinis R, Jolesz FA, McCarley RW. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry. 2004;161(9):1603–11. https://doi.org/10.1176/appi.ajp.161.9.1603.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Gaser C, Nenadic I, Volz HP, Buchel C, Sauer H. Neuroanatomy of “hearing voices”: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cereb Cortex. 2004;14(1):91–6.

    Article  PubMed  Google Scholar 

  239. O’Daly OG, Frangou S, Chitnis X, Shergill SS. Brain structural changes in schizophrenia patients with persistent hallucinations. Psychiatry Res. 2007;156(1):15–21. https://doi.org/10.1016/j.pscychresns.2007.03.001.

    Article  PubMed  Google Scholar 

  240. Cachia A, Paillere-Martinot ML, Galinowski A, Januel D, de Beaurepaire R, Bellivier F, Artiges E, Andoh J, Bartres-Faz D, Duchesnay E, Riviere D, Plaze M, Mangin JF, Martinot JL. Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. NeuroImage. 2008;39(3):927–35. https://doi.org/10.1016/j.neuroimage.2007.08.049.

    Article  PubMed  Google Scholar 

  241. Hubl D, Dougoud-Chauvin V, Zeller M, Federspiel A, Boesch C, Strik W, Dierks T, Koenig T. Structural analysis of Heschl’s gyrus in schizophrenia patients with auditory hallucinations. Neuropsychobiology. 2010;61(1):1–9. https://doi.org/10.1159/000258637.

    Article  PubMed  Google Scholar 

  242. Nenadic I, Smesny S, Schlosser RG, Sauer H, Gaser C. Auditory hallucinations and brain structure in schizophrenia: voxel-based morphometric study. Br J Psychiatry J Ment Sci. 2010;196(5):412–3. https://doi.org/10.1192/bjp.bp.109.070441.

    Article  Google Scholar 

  243. van Tol M-J, van der Meer L, Bruggeman R, Modinos G, Knegtering H, Alemana A. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: the superior temporal gyrus does not stand alone. Neuroimage Clin. 2014;4:249–57.

    Article  PubMed  Google Scholar 

  244. Chen X, Liang S, Pu W, Song Y, Mwansisya TE, Yang Q, Liu H, Liu Z, Shan B, Xue Z. Reduced cortical thickness in right Heschl’s gyrus associated with auditory verbal hallucinations severity in first-episode schizophrenia. BMC Psychiatry. 2015;15:152. https://doi.org/10.1186/s12888-015-0546-2.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Huang P, Xi Y, Lu ZL, Chen Y, Li X, Li W, Zhu X, Cui LB, Tan Q, Liu W, Li C, Miao D, Yin H. Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: a volumetric MRI study. Sci Rep. 2015;5:14505. https://doi.org/10.1038/srep14505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Morch-Johnsen L, Nesvag R, Jorgensen KN, Lange EH, Hartberg CB, Haukvik UK, Kompus K, Westerhausen R, Osnes K, Andreassen OA, Melle I, Hugdahl K, Agartz I. Auditory cortex characteristics in schizophrenia: associations with auditory hallucinations. Schizophr Bull. 2017;43(1):75–83. https://doi.org/10.1093/schbul/sbw130.

    Article  PubMed  Google Scholar 

  247. Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry. 2004;61(7):658–68. https://doi.org/10.1001/archpsyc.61.7.658.

    Article  PubMed  Google Scholar 

  248. Shergill SS, Kanaan RA, Chitnis XA, O’Daly O, Jones DK, Frangou S, Williams SC, Howard RJ, Barker GJ, Murray RM, McGuire P. A diffusion tensor imaging study of fasciculi in schizophrenia. Am J Psychiatry. 2007;164(3):467–73. https://doi.org/10.1176/ajp.2007.164.3.467.

    Article  PubMed  Google Scholar 

  249. Seok JH, Park HJ, Chun JW, Lee SK, Cho HS, Kwon JS, Kim JJ. White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatry Res. 2007;156(2):93–104. https://doi.org/10.1016/j.pscychresns.2007.02.002.

    Article  PubMed  Google Scholar 

  250. Lee K, Yoshida T, Kubicki M, Bouix S, Westin CF, Kindlmann G, Niznikiewicz M, Cohen A, McCarley RW, Shenton ME. Increased diffusivity in superior temporal gyrus in patients with schizophrenia: a Diffusion Tensor Imaging study. Schizophr Res. 2009;108(1–3):33–40. https://doi.org/10.1016/j.schres.2008.11.024.

    Article  PubMed  PubMed Central  Google Scholar 

  251. de Weijer AD, Neggers SF, Diederen KM, Mandl RC, Kahn RS, Hulshoff Pol HE, Sommer IE. Aberrations in the arcuate fasciculus are associated with auditory verbal hallucinations in psychotic and in non-psychotic individuals. Hum Brain Mapp. 2013;34(3):626–34. https://doi.org/10.1002/hbm.21463.

    Article  PubMed  Google Scholar 

  252. de Weijer AD, Mandl RC, Diederen KM, Neggers SF, Kahn RS, Hulshoff Pol HE, Sommer IE. Microstructural alterations of the arcuate fasciculus in schizophrenia patients with frequent auditory verbal hallucinations. Schizophr Res. 2011;130(1–3):68–77. https://doi.org/10.1016/j.schres.2011.05.010.

    Article  PubMed  Google Scholar 

  253. Catani M, Craig MC, Forkel SJ, Kanaan R, Picchioni M, Toulopoulou T, Shergill S, Williams S, Murphy DG, McGuire P. Altered integrity of perisylvian language pathways in schizophrenia: relationship to auditory hallucinations. Biol Psychiatry. 2011;70(12):1143–50. https://doi.org/10.1016/j.biopsych.2011.06.013.

    Article  PubMed  Google Scholar 

  254. Knochel C, O’Dwyer L, Alves G, Reinke B, Magerkurth J, Rotarska-Jagiela A, Prvulovic D, Hampel H, Linden DE, Oertel-Knochel V. Association between white matter fiber integrity and subclinical psychotic symptoms in schizophrenia patients and unaffected relatives. Schizophr Res. 2012;140(1–3):129–35. https://doi.org/10.1016/j.schres.2012.06.001.

    Article  PubMed  Google Scholar 

  255. Whitford TJ, Lee SW, Oh JS, de Luis-Garcia R, Savadjiev P, Alvarado JL, Westin CF, Niznikiewicz M, Nestor PG, McCarley RW, Kubicki M, Shenton ME. Localized abnormalities in the cingulum bundle in patients with schizophrenia: a Diffusion Tensor tractography study. Neuroimage Clin. 2014;5:93–9. https://doi.org/10.1016/j.nicl.2014.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  256. McCarthy-Jones S, Oestreich LK, Australian Schizophrenia Research B, Whitford TJ. Reduced integrity of the left arcuate fasciculus is specifically associated with auditory verbal hallucinations in schizophrenia. Schizophr Res. 2015;162(1–3):1–6. https://doi.org/10.1016/j.schres.2014.12.041.

    Article  PubMed  Google Scholar 

  257. Curcic-Blake B, Nanetti L, van der Meer L, Cerliani L, Renken R, Pijnenborg GH, Aleman A. Not on speaking terms: hallucinations and structural network disconnectivity in schizophrenia. Brain Struct Funct. 2015;220(1):407–18. https://doi.org/10.1007/s00429-013-0663-y.

    Article  PubMed  Google Scholar 

  258. Wigand M, Kubicki M, Clemm von Hohenberg C, Leicht G, Karch S, Eckbo R, Pelavin PE, Hawley K, Rujescu D, Bouix S, Shenton ME, Mulert C. Auditory verbal hallucinations and the interhemispheric auditory pathway in chronic schizophrenia. World J Biol Psychiatry. 2015;16(1):31–44. https://doi.org/10.3109/15622975.2014.948063.

    Article  PubMed  Google Scholar 

  259. Xi YB, Guo F, Li H, Chang X, Sun JB, Zhu YQ, Liu WM, Cui LB, Chen G, Wang HN, Yin H. The structural connectivity pathology of first-episode schizophrenia based on the cardinal symptom of auditory verbal hallucinations. Psychiatry Res. 2016;257:25–30. https://doi.org/10.1016/j.pscychresns.2016.09.011.

    Article  Google Scholar 

  260. Zhu J, Wang C, Liu F, Qin W, Li J, Zhuo C. Alterations of functional and structural networks in schizophrenia patients with auditory verbal hallucinations. Front Hum Neurosci. 2016;10:114. https://doi.org/10.3389/fnhum.2016.00114.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Oestreich LK, McCarthy-Jones S, Australian Schizophrenia Research B, Whitford TJ. Decreased integrity of the fronto-temporal fibers of the left inferior occipito-frontal fasciculus associated with auditory verbal hallucinations in schizophrenia. Brain Imaging Behav. 2016;10(2):445–54. https://doi.org/10.1007/s11682-015-9421-5.

    Article  PubMed  Google Scholar 

  262. Psomiades M, Fonteneau C, Mondino M, Luck D, Haesebaert F, Suaud-Chagny MF, Brunelin J. Integrity of the arcuate fasciculus in patients with schizophrenia with auditory verbal hallucinations: a DTI-tractography study. Neuroimage Clin. 2016;12:970–5. https://doi.org/10.1016/j.nicl.2016.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Leroux E, Delcroix N, Dollfus S. Abnormalities of language pathways in schizophrenia patients with and without a lifetime history of auditory verbal hallucinations: a DTI-based tractography study. World J Biol Psychiatry. 2017;18(7):528–38. https://doi.org/10.1080/15622975.2016.1274053.

    Article  PubMed  Google Scholar 

  264. McGuire PK, Shah GM, Murray RM. Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet. 1993;342(8873):703–6.

    Article  CAS  PubMed  Google Scholar 

  265. McGuire PK, Silbersweig DA, Wright I, Murray RM, David AS, Frackowiak RS, Frith CD. Abnormal monitoring of inner speech: a physiological basis for auditory hallucinations. Lancet. 1995;346(8975):596–600.

    Article  CAS  PubMed  Google Scholar 

  266. Copolov DL, Seal ML, Maruff P, Ulusoy R, Wong MT, Tochon-Danguy HJ, Egan GF. Cortical activation associated with the experience of auditory hallucinations and perception of human speech in schizophrenia: a PET correlation study. Psychiatry Res. 2003;122(3):139–52.

    Article  PubMed  Google Scholar 

  267. Stephane M, Hagen MC, Lee JT, Uecker J, Pardo PJ, Kuskowski MA, Pardo JV. About the mechanisms of auditory verbal hallucinations: a positron emission tomographic study. J Psychiatry Neurosci. 2006;31(6):396–405.

    PubMed  PubMed Central  Google Scholar 

  268. Kopecek M, Spaniel F, Novak T, Tislerova B, Belohlavek O, Horacek J. 18FDG PET in hallucinating and non-hallucinating patients. Neuro Endocrinol Lett. 2007;28(1):53–9.

    PubMed  Google Scholar 

  269. Horga G, Parellada E, Lomena F, Fernandez-Egea E, Mane A, Font M, Falcon C, Konova AB, Pavia J, Ros D, Bernardo M. Differential brain glucose metabolic patterns in antipsychotic-naive first-episode schizophrenia with and without auditory verbal hallucinations. J Psychiatry Neurosci. 2011;36(5):312–21. https://doi.org/10.1503/jpn.100085.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67(10):912–8. https://doi.org/10.1016/j.biopsych.2009.11.017.

    Article  PubMed  Google Scholar 

  271. Gavrilescu M, Rossell S, Stuart GW, Shea TL, Innes-Brown H, Henshall K, McKay C, Sergejew AA, Copolov D, Egan GF. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study. Psychol Med. 2010;40(7):1149–58. https://doi.org/10.1017/S0033291709991632.

    Article  CAS  PubMed  Google Scholar 

  272. Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB. Resting state functional connectivity in patients with chronic hallucinations. PLoS One. 2012;7(9):e43516. https://doi.org/10.1371/journal.pone.0043516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Shinn AK, Baker JT, Cohen BM, Ongur D. Functional connectivity of left Heschl’s gyrus in vulnerability to auditory hallucinations in schizophrenia. Schizophr Res. 2013;143(2–3):260–8. https://doi.org/10.1016/j.schres.2012.11.037.

    Article  PubMed  Google Scholar 

  274. Alonso-Solis A, Vives-Gilabert Y, Grasa E, Portella MJ, Rabella M, Sauras RB, Roldan A, Nunez-Marin F, Gomez-Anson B, Perez V, Alvarez E, Corripio I. Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophr Res. 2015;161(2–3):261–8. https://doi.org/10.1016/j.schres.2014.10.047.

    Article  PubMed  Google Scholar 

  275. Rolland B, Amad A, Poulet E, Bordet R, Vignaud A, Bation R, Delmaire C, Thomas P, Cottencin O, Jardri R. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull. 2015;41(1):291–9. https://doi.org/10.1093/schbul/sbu097.

    Article  PubMed  Google Scholar 

  276. Lefebvre S, Demeulemeester M, Leroy A, Delmaire C, Lopes R, Pins D, Thomas P, Jardri R. Network dynamics during the different stages of hallucinations in schizophrenia. Hum Brain Mapp. 2016;37(7):2571–86. https://doi.org/10.1002/hbm.23197.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Li B, Cui LB, Xi YB, Friston KJ, Guo F, Wang HN, Zhang LC, Bai YH, Tan QR, Yin H, Lu H. Abnormal effective connectivity in the brain is involved in auditory verbal hallucinations in schizophrenia. Neurosci Bull. 2017;33(3):281–91. https://doi.org/10.1007/s12264-017-0101-x.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Hare SM, Ford JM, Ahmadi A, Damaraju E, Belger A, Bustillo J, Lee HJ, Mathalon DH, Mueller BA, Preda A, van Erp TG, Potkin SG, Calhoun VD, Turner JA, Functional Imaging Biomedical Informatics Research Network. Modality-dependent impact of hallucinations on low-frequency fluctuations in schizophrenia. Schizophr Bull. 2017;43(2):389–96. https://doi.org/10.1093/schbul/sbw093.

    Article  PubMed  Google Scholar 

  279. Allen P, Amaro E, Fu CH, Williams SC, Brammer MJ, Johns LC, McGuire PK. Neural correlates of the misattribution of speech in schizophrenia. Br J Psychiatry. 2007;190:162–9. https://doi.org/10.1192/bjp.bp.106.025700.

    Article  PubMed  Google Scholar 

  280. Fu CH, Brammer MJ, Yaguez L, Allen P, Matsumoto K, Johns L, Weinstein S, Borgwardt S, Broome M, van Haren N, McGuire PK. Increased superior temporal activation associated with external misattributions of self-generated speech in schizophrenia. Schizophr Res. 2008;100(1–3):361–3. https://doi.org/10.1016/j.schres.2007.10.023.

    Article  PubMed  Google Scholar 

  281. Zhang Z, Shi J, Yuan Y, Hao G, Yao Z, Chen N. Relationship of auditory verbal hallucinations with cerebral asymmetry in patients with schizophrenia: an event-related fMRI study. J Psychiatr Res. 2008;42(6):477–86. https://doi.org/10.1016/j.jpsychires.2007.04.003.

    Article  PubMed  Google Scholar 

  282. Zhang ZJ, Hao GF, Shi JB, Mou XD, Yao ZJ, Chen N. Investigation of the neural substrates of voice recognition in Chinese schizophrenic patients with auditory verbal hallucinations: an event-related functional MRI study. Acta Psychiatr Scand. 2008;118(4):272–80. https://doi.org/10.1111/j.1600-0447.2008.01243.x.

    Article  PubMed  Google Scholar 

  283. Simons CJ, Tracy DK, Sanghera KK, O’Daly O, Gilleen J, Dominguez MD, Krabbendam L, Shergill SS. Functional magnetic resonance imaging of inner speech in schizophrenia. Biol Psychiatry. 2010;67(3):232–7. https://doi.org/10.1016/j.biopsych.2009.09.007.

    Article  PubMed  Google Scholar 

  284. Escarti MJ, de la Iglesia-Vaya M, Marti-Bonmati L, Robles M, Carbonell J, Lull JJ, Garcia-Marti G, Manjon JV, Aguilar EJ, Aleman A, Sanjuan J. Increased amygdala and parahippocampal gyrus activation in schizophrenic patients with auditory hallucinations: an fMRI study using independent component analysis. Schizophr Res. 2010;117(1):31–41. https://doi.org/10.1016/j.schres.2009.12.028.

    Article  PubMed  Google Scholar 

  285. Vercammen A, Knegtering H, Bruggeman R, Aleman A. Subjective loudness and reality of auditory verbal hallucinations and activation of the inner speech processing network. Schizophr Bull. 2011;37(5):1009–16. https://doi.org/10.1093/schbul/sbq007.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Wu CH, Hwang TJ, Chen PJ, Chou TL, Hsu YC, Liu CM, Wang HL, Chen CM, Hua MS, Hwu HG, Tseng WY. Reduced structural integrity and functional lateralization of the dorsal language pathway correlate with hallucinations in schizophrenia: a combined diffusion spectrum imaging and functional magnetic resonance imaging study. Psychiatry Res. 2014;224(3):303–10. https://doi.org/10.1016/j.pscychresns.2014.08.010.

    Article  PubMed  Google Scholar 

  287. Hubl D, Koenig T, Strik WK, Garcia LM, Dierks T. Competition for neuronal resources: how hallucinations make themselves heard. Br J Psychiatry. 2007;190:57–62. https://doi.org/10.1192/bjp.bp.106.022954.

    Article  PubMed  Google Scholar 

  288. Cui LB, Chen G, Xu ZL, Liu L, Wang HN, Guo L, Liu WM, Liu TT, Qi S, Liu K, Qin W, Sun JB, Xi YB, Yin H. Cerebral blood flow and its connectivity features of auditory verbal hallucinations in schizophrenia: a perfusion study. Psychiatry Res. 2017;260:53–61. https://doi.org/10.1016/j.pscychresns.2016.12.006.

    Article  Google Scholar 

  289. Li P, Fan TT, Zhao RJ, Han Y, Shi L, Sun HQ, Chen SJ, Shi J, Lin X, Lu L. Altered brain network connectivity as a potential endophenotype of schizophrenia. Sci Rep. 2017;7(1):5483. https://doi.org/10.1038/s41598-017-05774-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Suzuki M, Yuasa S, Minabe Y, Murata M, Kurachi M. Left superior temporal blood flow increases in schizophrenic and schizophreniform patients with auditory hallucination: a longitudinal case study using 123I-IMP SPECT. Eur Arch Psychiatry Clin Neurosci. 1993;242(5):257–61.

    Article  CAS  PubMed  Google Scholar 

  291. Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L, et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature. 1995;378(6553):176–9. https://doi.org/10.1038/378176a0.

    Article  CAS  PubMed  Google Scholar 

  292. Martinez-Granados B, Brotons O, Martinez-Bisbal MC, Celda B, Marti-Bonmati L, Aguilar EJ, Gonzalez JC, Sanjuan J. Spectroscopic metabolomic abnormalities in the thalamus related to auditory hallucinations in patients with schizophrenia. Schizophr Res. 2008;104(1–3):13–22. https://doi.org/10.1016/j.schres.2008.05.025.

    Article  CAS  PubMed  Google Scholar 

  293. Martinez-Granados B, Martinez-Bisbal MC, Sanjuan J, Aguilar EJ, Marti-Bonmati L, Molla E, Celda B. Study of the inferior colliculus in patients with schizophrenia by magnetic resonance spectroscopy. Rev Neurol. 2014;59(1):1–7.

    CAS  PubMed  Google Scholar 

  294. Homan P, Vermathen P, Van Swam C, Federspiel A, Boesch C, Strik W, Dierks T, Hubl D, Kreis R. Magnetic resonance spectroscopy investigations of functionally defined language areas in schizophrenia patients with and without auditory hallucinations. NeuroImage. 2014;94:23–32. https://doi.org/10.1016/j.neuroimage.2014.03.009.

    Article  PubMed  Google Scholar 

  295. Mulert C, Kirsch V, Whitford TJ, Alvarado J, Pelavin P, McCarley RW, Kubicki M, Salisbury DF, Shenton ME. Hearing voices: a role of interhemispheric auditory connectivity? World J Biol Psychiatry. 2012;13(2):153–8. https://doi.org/10.3109/15622975.2011.570789.

    Article  PubMed  Google Scholar 

  296. Spalletta G, Piras F, Alex Rubino I, Caltagirone C, Fagioli S. Fronto-thalamic volumetry markers of somatic delusions and hallucinations in schizophrenia. Psychiatry Res. 2013;212(1):54–64. https://doi.org/10.1016/j.pscychresns.2012.04.015.

    Article  PubMed  Google Scholar 

  297. Kindler J, Homan P, Jann K, Federspiel A, Flury R, Hauf M, Strik W, Dierks T, Hubl D. Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations. Biol Psychiatry. 2013;73(6):518–24. https://doi.org/10.1016/j.biopsych.2012.06.019.

    Article  PubMed  Google Scholar 

  298. Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168(1):73–81. https://doi.org/10.1176/appi.ajp.2010.09101522.

    Article  PubMed  Google Scholar 

  299. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110(1–3):1–23. https://doi.org/10.1016/j.schres.2009.03.005.

    Article  PubMed  Google Scholar 

  300. Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry. 2007;164(10):1593–602. https://doi.org/10.1176/appi.ajp.2007.06081358.

    Article  PubMed  Google Scholar 

  301. Maj M. Karl Jaspers and the genesis of delusions in schizophrenia. Schizophr Bull. 2013;39(2):242–3. https://doi.org/10.1093/schbul/sbs190.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Maj M. Keeping an open attitude towards the RDoC project. World Psychiatry. 2014;13(1):1–3. https://doi.org/10.1002/wps.20111.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748–51. https://doi.org/10.1176/appi.ajp.2010.09091379.

    Article  PubMed  Google Scholar 

  304. Stegmayer K, Strik W, Federspiel A, Wiest R, Bohlhalter S, Walther S. Specific cerebral perfusion patterns in three schizophrenia symptom dimensions. Schizophr Res. 2017;190:96–101. https://doi.org/10.1016/j.schres.2017.03.018.

    Article  PubMed  Google Scholar 

  305. Viher PV, Stegmayer K, Giezendanner S, Federspiel A, Bohlhalter S, Vanbellingen T, Wiest R, Strik W, Walther S. Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. Neuroimage Clin. 2016;12:93–9. https://doi.org/10.1016/j.nicl.2016.06.013.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Stegmayer K, Horn H, Federspiel A, Razavi N, Bracht T, Laimbock K, Strik W, Dierks T, Wiest R, Muller TJ, Walther S. Ventral striatum gray matter density reduction in patients with schizophrenia and psychotic emotional dysregulation. Neuroimage Clin. 2014;4:232–9. https://doi.org/10.1016/j.nicl.2013.12.007.

    Article  PubMed  Google Scholar 

  307. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66(2):77–92. https://doi.org/10.1159/000339456.

    Article  PubMed  Google Scholar 

  308. Walther S. Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res. 2015;233(3):293–8. https://doi.org/10.1016/j.pscychresns.2015.06.010.

    Article  PubMed  Google Scholar 

  309. Walther S, Eisenhardt S, Bohlhalter S, Vanbellingen T, Muri R, Strik W, Stegmayer K. Gesture performance in schizophrenia predicts functional outcome after 6 months. Schizophr Bull. 2016;42(6):1326–33. https://doi.org/10.1093/schbul/sbw124.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Walther S, Stegmayer K, Horn H, Razavi N, Muller TJ, Strik W. Physical activity in schizophrenia is higher in the first episode than in subsequent ones. Front Psychiatry. 2014;5:191. https://doi.org/10.3389/fpsyt.2014.00191.

    Article  PubMed  Google Scholar 

  311. Walther S, Strik W. Catatonia. CNS Spectr. 2016;21(4):341–8. https://doi.org/10.1017/S1092852916000274.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mucci, A., Galderisi, S., Amodio, A., Dierks, T. (2019). Neuroimaging and Psychopathological Domains. In: Galderisi, S., DeLisi, L., Borgwardt, S. (eds) Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders . Springer, Cham. https://doi.org/10.1007/978-3-319-97307-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97307-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97306-7

  • Online ISBN: 978-3-319-97307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics