Skip to main content

Latent Subspace Representation for Multiclass Classification

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

  • 3403 Accesses

Abstract

Self-representation based subspace representation has shown its effectiveness in clustering tasks, in which the key assumption is that data are from multiple subspaces and can be reconstructed by the data themselves. Benefiting from the self-representation manner, ideally, subspace representation matrix will be block-diagonal. The block-diagonal structure indicates the true segmentation of data, which is beneficial to the multiclass classification task. In this paper, we propose a Latent Subspace Representation for Multiclass Classification (LSRMC). With the help of a projection, our method focuses on exploiting the subspace representation based on the low-dimensional latent subspace, which further ensures the quality of subspace representation. We learn the projection, subspace representation and classifier in a unified model, and solve the problem efficiently by using Augmented Lagrangian Multiplier with Alternating Direction Minimization. Experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art multiclass classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  2. 2.

    http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

  3. 3.

    http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

  4. 4.

    http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

  5. 5.

    https://www.microsoft.com/en-us/research/project/image-understanding/.

References

  1. Aly, M.: Survey on multiclass classification methods. Neural Netw. 19, 1–9 (2005)

    Google Scholar 

  2. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI (2001)

    Google Scholar 

  3. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 257–264 (1986)

    Google Scholar 

  4. Ho, T.K.: Random decision forests. In: ICDAR (1995)

    Google Scholar 

  5. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: ICML (1998)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  7. Nie, F., Wang, X., Huang, H.: Multiclass capped \(\ell_p\)-norm SVM for robust classifications. In: AAAI (2017)

    Google Scholar 

  8. Zhang, T., Zhou, Z.: Multi-class optimal margin distribution machine. In: ICML (2017)

    Google Scholar 

  9. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  10. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  11. Vidal, R., Ma, Y., Sastry, S.S.: Principal Component Analysis. IEEE Computer Society, Silver Spring (2005)

    MATH  Google Scholar 

  12. Riffenburgh, R.H., Clunies-Ross, C.W.: Linear discriminant analysis. Chicago (1960)

    Google Scholar 

  13. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \({\ell_{2,1}}\)-norms minimization. In: NIPS (2010)

    Google Scholar 

  14. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Comput. 15, 349–396 (2014)

    Article  Google Scholar 

  15. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)

    Google Scholar 

  16. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML (2010)

    Google Scholar 

  17. Patel, V.M., Van Nguyen, H., Vidal, R.: Latent space sparse subspace clustering. In: ICCV (2013)

    Google Scholar 

  18. Zhang, Z., Zhao, M., Li, F., Zhang, L., Yan, S.: Robust alternating low-rank representation by joint \(l_p\)- and \(l_{2, p}\)-norm minimization. Neural Netw. 96, 55–70 (2017)

    Article  Google Scholar 

  19. Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: CVPR (2017)

    Google Scholar 

  20. Zhang, Z., Li, F., Zhao, M., Zhang, L., Yan, S.: Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification. IEEE Trans. Image Process. 25, 2429–2443 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS (2011)

    Google Scholar 

  22. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. Soc. Ind. Appl. Math. 20, 1956–1982 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: CVPR (2015)

    Google Scholar 

  24. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  25. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: Wechsler, H., Phillips, P.J., Bruce, V., Souliè, F.F., Huang, T.S. (eds.) Face Recognition. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 163, pp. 73–85. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-72201-1_4

    Chapter  Google Scholar 

  26. Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki, A.: Sparse Bayesian classification of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2256–2267 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Grand No: 61602337, 61732011, 61702358, 61702296, 61772360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J., Zhang, C., Wang, X., Zhu, P., Wang, Z., Hu, Q. (2018). Latent Subspace Representation for Multiclass Classification. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics