Skip to main content

Control and Safety of Autonomous Vehicles with Learning-Enabled Components

  • Chapter
  • First Online:
Safe, Autonomous and Intelligent Vehicles

Part of the book series: Unmanned System Technologies ((UST))

Abstract

Real-world autonomous systems, such as autonomous vehicles, often operate in uncertain and partially observable environments. In such scenarios, designing a controller that achieves the desired behavior on the system is a challenging problem. The proven efficacy of learning-based control schemes strongly motivates their application to autonomous vehicles. However, guaranteeing correct operation of learning-based schemes during and after the learning process is currently an unresolved issue, which is of vital importance in safety-critical systems such as autonomous vehicles. Hamilton-Jacobi (HJ) reachability analysis is an important formal verification method for guaranteeing performance and safety properties of dynamical systems; it has been applied to many small-scale systems in the past decade. Its advantages include compatibility with general nonlinear system dynamics, formal treatment of bounded disturbances, and the availability of well-developed numerical tools.

In this chapter, we provide a brief overview of the challenges associated with system verification when learning is involved in the control loop, some recent attempts to address these challenges based on HJ reachability, and the open questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function f : X → Y  between two measurable spaces (X, ΣX) and (Y, ΣY) is said to be measurable if the preimage of a measurable set in Y  is a measurable set in X, that is: ∀V ∈ ΣY, f −1(V ) ∈ ΣX, with ΣX, ΣY σ-algebras on X,Y .

  2. 2.

    We will omit the notation (s) from variables such as x and a when referring to function values here on.

References

  1. B.P. Tice, Unmanned aerial vehicles: The force multiplier of the 1990s. Airpower Journal 5(1), 41–55 (1991)

    Google Scholar 

  2. W. DeBusk, Unmanned aerial vehicle systems for disaster relief: Tornado alley, in Infotech@ Aerospace Conferences (2010)

    Google Scholar 

  3. Amazon.com, Inc., Amazon Prime Air, 2016. Available: http://www.amazon.com/b?node=8037720011

  4. AUVSI News, UAS aid in South Carolina tornado investigation, 2016. Available: http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado

  5. BBC Technology, Google plans drone delivery service for 2017, 2016. Available: http://www.bbc.com/news/technology-34704868

  6. I. Mitchell, A. Bayen, C. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  7. E. Coddington, N. Levinson, Theory of Ordinary Differential Equations (Tata McGraw-Hill Education, 1955)

    Google Scholar 

  8. J. Lygeros, On reachability and minimum cost optimal control. Automatica 40(6), 917–927 (2004)

    Article  MathSciNet  Google Scholar 

  9. K. Margellos, J. Lygeros, Hamilton-Jacobi formulation for reach–avoid differential games. IEEE Trans. Autom. Control 56(8), 1849–1861 (2011)

    Article  MathSciNet  Google Scholar 

  10. J. Fisac, M. Chen, C. Tomlin, S. Sastry, Reach-avoid problems with time-varying dynamics, targets and constraints, in Conference on Hybrid Systems: Computation and Control (2015)

    Google Scholar 

  11. S. Bansal, M. Chen, S. Herbert, C. Tomlin, Hamilton-Jacobi reachability: a brief overview and recent advances, in Conference on Decision and Control (2017)

    Google Scholar 

  12. M. Chen, S. Bansal, K. Tanabe, C. Tomlin, Provably safe and robust drone routing via sequential path planning: a case study in San Francisco and the Bay Area, 2017. Available: http://arxiv.org/abs/1705.04585

  13. M. Chen, S. Bansal, J. Fisac, C. Tomlin, Robust sequential path planning under disturbances and adversarial intruder. IEEE Trans. Control Syst. Technol. (2018)

    Google Scholar 

  14. S. Bansal, M. Chen, J. Fisac, C. Tomlin, Safe sequential path planning of multi-vehicle systems under presence of disturbances and imperfect information, in American Control Conference (2017)

    Google Scholar 

  15. M.P. Deisenroth, G. Neumann, J. Peters, A survey on policy search for robotics. Found. Trends Robot. 2(1–2), 1–142 (2013)

    Google Scholar 

  16. M.P. Deisenroth, D. Fox, C.E. Rasmussen, Gaussian processes for data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 408–423 (2015)

    Article  Google Scholar 

  17. S. Levine, P. Abbeel, Learning neural network policies with guided policy search under unknown dynamics, in Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  18. L. Ljung, System identification, in Signal Analysis and Prediction (Springer, 1998)

    Google Scholar 

  19. T. Söderström, P. Stoica, System identification (1989)

    Google Scholar 

  20. K.J. Åström, P. Eykhoff, System identification–a survey. Automatica 7(2), 123–162 (1971)

    Article  MathSciNet  Google Scholar 

  21. J.-N. Juang, Applied system identification (1994)

    Google Scholar 

  22. O. Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy models (2013)

    Google Scholar 

  23. S. Chen, S. Billings, Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 56(2), 319–346 (1992)

    Article  MathSciNet  Google Scholar 

  24. S. Haykin, Neural networks: a comprehensive foundation (1998)

    Google Scholar 

  25. K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  26. K.J. Hunt, D. Sbarbaro, R. Żbikowski, P.J. Gawthrop, Neural networks for control systems–a survey. Automatica 28(6), 1083–1112 (1992)

    Article  MathSciNet  Google Scholar 

  27. R. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  28. A. Yeşildirek, F.L. Lewis, Feedback linearization using neural networks. Automatica 31(11), 1659–1664 (1995)

    Article  MathSciNet  Google Scholar 

  29. S. Bansal, A. Akametalu, F. Jiang, F. Laine, C. Tomlin, Learning quadrotor dynamics using neural network for flight control, in Conference on Decision and Control (2016)

    Google Scholar 

  30. A. Punjani, P. Abbeel, Deep learning helicopter dynamics models, in Conference on Robotics and Automation (2015)

    Google Scholar 

  31. I. Lenz, R.A. Knepper, A. Saxena, DeepMPC: learning deep latent features for model predictive control, in Robotics: Science and Systems (2015)

    Google Scholar 

  32. A. Nagabandi, G. Yang, T. Asmar, G. Kahn, S. Levine, R. Fearing, Neural network dynamics models for control of under-actuated legged millirobots (2017, Preprint), arXiv:1711.05253

    Google Scholar 

  33. M. Deisenroth, C. Rasmussen, PILCO: a model-based and data-efficient approach to policy search, in International Conference on Machine Learning (2011)

    Google Scholar 

  34. J. Joseph, A. Geramifard, J. Roberts, J. How, N. Roy, Reinforcement learning with misspecified model classes, in International Conference on Robotics and Automation (2013)

    Google Scholar 

  35. P. Donti, B. Amos, J. Kolter, Task-based end-to-end model learning. Adv. Neural Inf. Proces. Syst. (2017)

    Google Scholar 

  36. C. Atkeson, Nonparametric model-based reinforcement learning. Adv. Neural Inf. Proces. Syst. (1998)

    Google Scholar 

  37. P. Abbeel, M. Quigley, A. Ng, Using inaccurate models in reinforcement learning, in International Conference on Machine Learning (2006)

    Google Scholar 

  38. M. Gevers, Identification for control: from the early achievements to the revival of experiment design. Eur. J. Control 11(4–5), 335–352 (2005)

    Article  MathSciNet  Google Scholar 

  39. H. Hjalmarsson, M. Gevers, F. De Bruyne, For model-based control design, closed-loop identification gives better performance. Automatica 32(12), 1659–1673 (1996)

    Article  MathSciNet  Google Scholar 

  40. S. Bansal, R. Calandra, T. Xiao, S. Levine, C. Tomlin, Goal-driven dynamics learning via Bayesian optimization, in Conference on Decision and Control (2017)

    Google Scholar 

  41. A. Akametalu, J. Fisac, J. Gillula, S. Kaynama, M. Zeilinger, C. Tomlin, Reachability-based safe learning with Gaussian processes, in Conference on Decision and Control (2014)

    Google Scholar 

  42. J. Fisac, A. Akametalu, M. Zeilinger, S. Kaynama, J. Gillula, C. Tomlin, A general safety framework for learning-based control in uncertain robotic systems (2017, Preprint), arXiv:1705.01292

    Google Scholar 

  43. Y. Sui, A. Gotovos, J. Burdick, A. Krause, Safe exploration for optimization with Gaussian processes, in International Conference on Machine Learning (2015)

    Google Scholar 

  44. F. Berkenkamp, A. Schoellig, A. Krause, Safe controller optimization for quadrotors with Gaussian processes, in International Conference on Robotics and Automation (2016)

    Google Scholar 

  45. R. Alur, T. A. Henzinger, G. Lafferriere, G.J. Pappas, Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

    Article  Google Scholar 

  46. C. Baier, J. Katoen, K.G. Larsen, Principles of Model Checking (MIT press, 2008)

    Google Scholar 

  47. A. Girard, G.J. Pappas, Approximate bisimulation: a bridge between computer science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)

    Article  MathSciNet  Google Scholar 

  48. G. Pola, A. Girard, P. Tabuada, Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

    Article  MathSciNet  Google Scholar 

  49. A. Girard, G. Pola, P. Tabuada, Approximately bisimilar symbolic models for incrementally stable switched systems. IEEE Trans. Autom. Control 55(1), 116–126 (2010)

    Article  MathSciNet  Google Scholar 

  50. M.L. Bujorianu, J. Lygeros, M.C. Bujorianu, Bisimulation for general stochastic hybrid systems, in International Workshop on Hybrid Systems: Computation and Control (Springer, 2005), pp. 198–214

    Google Scholar 

  51. J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for labelled Markov processes. Inf. Comput. 179(2), 163–193 (2002)

    Article  MathSciNet  Google Scholar 

  52. K.G. Larsen, A. Skou, Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  53. S. Strubbe, A. Van Der Schaft, Bisimulation for communicating piecewise deterministic Markov processes (CPDPs), in International Workshop on Hybrid Systems: Computation and Control (Springer, 2005), pp. 623–639

    Google Scholar 

  54. A. Abate, Approximation metrics based on probabilistic bisimulations for general state-space Markov processes: a survey. Electron. Notes Theor. Comput. Sci. 297, 3–25 (2013)

    Article  Google Scholar 

  55. S. Bansal, S. Ghosh, A. Sangiovanni Vincentelli, S. Seshia, C. Tomlin, Context-specific validation of data-driven models (2018, Preprint), arXiv:1802.04929

    Google Scholar 

  56. M. Watter, J. Springenberg, J. Boedecker, M. Riedmiller, Embed to control: a locally linear latent dynamics model for control from raw images. Adv. Neural Inf. Proces. Syst. (2015)

    Google Scholar 

  57. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing atari with deep reinforcement learning (2013, Preprint), arXiv:1312.5602

    Google Scholar 

  58. S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  59. S. Gupta, J. Davidson, S. Levine, R. Sukthankar, J. Malik, Cognitive mapping and planning for visual navigation, in Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  60. P. Agrawal, A. Nair, P. Abbeel, J. Malik, S. Levine, Learning to poke by poking: experiential learning of intuitive physics. Adv. Neural Inf. Proces. Syst. (2016)

    Google Scholar 

  61. S. Herbert, M. Chen, S. Han, S. Bansal, J. Fisac, C. Tomlin, FaSTrack: a modular framework for fast and guaranteed safe motion planning, in Conference on Decision and Control (2017)

    Google Scholar 

  62. K. Hashimoto, A review on vision-based control of robot manipulators. Adv. Robot. 17(10), 969–991 (2003)

    Article  Google Scholar 

  63. M. Achtelik, M. Achtelik, S. Weiss, R. Siegwart, Onboard IMU and monocular vision based control for MAVs in unknown in-and outdoor environments. Int. Conf. Robot. Autom. (2011)

    Google Scholar 

  64. A. Beyeler, J. Zufferey, D. Floreano, Vision-based control of near-obstacle flight. Auton. Robot. 27(3), 201 (2009)

    Article  Google Scholar 

  65. O. Shakernia, Y. Ma, T. Koo, S. Sastry, Landing an unmanned air vehicle: vision based motion estimation and nonlinear control. Asian Journal of Control 1(3), 128–145 (1999)

    Article  Google Scholar 

  66. G. Ros, A. Sappa, D. Ponsa, A. Lopez, Visual SLAM for driverless cars: a brief survey, in Intelligent Vehicles Symposium (IV) Workshops, vol. 2, 2012

    Google Scholar 

  67. A. Kim, R. Eustice, Perception-driven navigation: active visual SLAM for robotic area coverage, in International Conference on Robotics and Automation (2013)

    Google Scholar 

  68. J. Fuentes-Pacheco, J. Ruiz-Ascencio, J. Rendón-Mancha, Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2015)

    Article  Google Scholar 

  69. J. Aulinas, Y. Petillot, J. Salvi, X. Lladó, The SLAM problem: a survey. CCIA 184(1), 363–371 (2008)

    Google Scholar 

  70. C. Finn, I. Goodfellow, S. Levine, Unsupervised learning for physical interaction through video prediction, in Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  71. C. Finn, X. Tan, Y. Duan, T. Darrell, S. Levine, P. Abbeel, Deep spatial autoencoders for visuomotor learning, in International Conference on Robotics and Automation (2016)

    Google Scholar 

  72. T. Dreossi, A. Donzé, S.A. Seshia, Compositional falsification of cyber-physical systems with machine learning components, in NASA Formal Methods Symposium (Springer, Cham, 2017), pp. 357–372

    Google Scholar 

  73. S.A. Seshia, D. Sadigh, S.S. Sastry, Towards verified artificial intelligence. arXiv preprint arXiv:1606.08514

    Google Scholar 

  74. T. Dreossi, S. Jha, S.A. Seshia, Semantic adversarial deep learning. arXiv preprint arXiv:1804.07045

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire J. Tomlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, S., Tomlin, C.J. (2019). Control and Safety of Autonomous Vehicles with Learning-Enabled Components. In: Yu, H., Li, X., Murray, R., Ramesh, S., Tomlin, C. (eds) Safe, Autonomous and Intelligent Vehicles. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-97301-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97301-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97300-5

  • Online ISBN: 978-3-319-97301-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics