Skip to main content
Book cover

Glaciokarsts pp 373–499Cite as

Notable Glaciokarsts of the World

  • Chapter
  • First Online:

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

In this chapter, notable glaciokarsts of the world are presented. Geographical location, geologic and tectonic settings, climatic conditions, glaciation phases as well as surface and underground karst landforms are presented about each selected region. Obviously, the areal extent, the degree of exploration and the amount of publicly available information are different in each case. Historically, the first glaciokarst studies were based on the Alps , the Pyrenees , the Dinaric Alps and the British Isles , and they have remained in the focus since then. Hence, these regions are presented here in more detail, but even these presentations can be considered only short overviews. Some other glaciokarst terrains, such as Scandinavia or the Rocky Mountains , have also been thoroughly studied but later in history; nevertheless, there are abundant internationally available publications about them. Certain parts of the Balkan Peninsula , the Apennines or even Anatolia received high attention more recently and novel methods have been used to investigate their glaciokarst terrains. The Carpathians and the Appalachians, which are also discussed in this chapter, are extensively studied mountains in general, but glaciokarsts occupy a relatively small proportion in them. On the other hand, there are still regions, which are difficult to access, where glaciokarsts are poorly explored, and/or the available literature is limited (or the publications are only in Russian, for instance). Some of them, namely, the Altai Mountains , the Greater Caucasus, the Tian Shan , the Pamir and the Patagonian archipelago , are also briefly presented here. Finally, it is noted that our selection does not contain all glaciokarsts of the world because it is beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackert RP Jr, Becker RA, Singer BS, Kurz MD, Caffee MW, Mickelson DM (2008) Patagonian glacier response during the Late Glacial-Holocene transition. Science 321:392–395

    Article  Google Scholar 

  • Adamson KR, Woodward JC, Hughes PD (2014) Glaciers and rivers: pleistocene uncoupling in a Mediterranean mountain karst. Quatern Sci Rev 94:28–43

    Article  Google Scholar 

  • Adamson KR, Woodward JC, Hughes PD (2015) Middle Pleistocene glacial outwash in poljes of the Dinaric karst. Geol Soc Am Spec Pap 516:516–520

    Google Scholar 

  • Andrieu-Ponel V, Hubschman J, Jalut G, Herail G (1988) Chronologie de la déglaciation des Pyrénées françaises. Bulletin de l’Association Française pour l’Etude du Quaternaire 34–35(2–3):55–67

    Article  Google Scholar 

  • A.R.S.I.P. (1985) Le Karst de la Pierre Saint-Martin en quelques chiffres. Karstologia 6(2):3–6

    Google Scholar 

  • Atkinson TC (1983) Growth mechanisms of speleothems in castleguard cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 15:523–536

    Article  Google Scholar 

  • Aucelli PP, Cesarano M, Di Paola G, Filocamo F, Rosskopf CM (2013) Geomorphological map of the central sector of the Matese Mountains (Southern Italy): an example of complex landscape evolution in a Mediterranean mountain environment. J Maps 9(4):604–616

    Article  Google Scholar 

  • Audra P (1994) Alpine karst speleogenesis: case studies from France (Vercors, Chartreuse, Ile de Crémieu) and Austria (Tennengebirge). Cave Karst Sci 21(3):75–80

    Google Scholar 

  • Audra P (2000) Le karst haut alpin du Kanin (Alpes Juliennes, Slovénie-Italie). Karstologia 35(1):27–38

    Google Scholar 

  • Auly T (2008) Quelques morphologies de rapport karst/glaciaire dans les Pyrénées (France). In: Tyc A, Stefaniak K (ed) Karst and cryokarst. University of Silesia Faculty of Earth Sciences, University of Wrocaw Zoological Institute, Sosnowiec-Wroclaw, Pologne, pp 129–154

    Google Scholar 

  • Baker VR (1968) Limestone caves in glaciated areas. Nat Speleol Soc Bull 30(2):36–37

    Google Scholar 

  • Baranowski S (1975) Report on the field work of the Polish scientific expedition to Spitsbergen in 1974. Uniwersytet Wroclawski, 25 p

    Google Scholar 

  • Barbaroux L, Besset Y (1968) Le karst de Sarsøyra (RiveNord Avatsmarkbre) Vest Spitsbergen. Norois 57:97–103

    Article  Google Scholar 

  • Baroni C, Pieruccini P, Bini M, Coltorti M, Fantozzi PL, Guidobaldi GI, Nannini D, Ribolini A, Salvatore MC (2015) Geomorphological and neotectonic map of the Apuan Alps (Tuscany, Italy). Geografia Fisica e Dinamica Quaternaria 38(2):201–227

    Google Scholar 

  • Bathrellos GD, Skilodimou HD, Maroukian H (2015) The significance of tectonism in the glaciations of Greece. Geological Society, London, Special Publications, p 433

    Google Scholar 

  • Bauer F, Zötl J (1972) Karst of Austria. In: Herak M, Stringfi eld VT (eds) Karst, important Karst of the Northern Hemisphere. Elsevier, Amsterdam, pp 225–265

    Google Scholar 

  • Bayari S, Özbek O (1995) An inventory of karstic caves in the Taurus Mountain Range (Southern Turkey): preliminary evaluation of geographic and hydrologic features. Cave Karst Sci 21(3):81–92

    Google Scholar 

  • Bayari S, Zreda M, Çiner A, Nazik L, Törk K, Özyurt N, Klimchouk A, Sarikaya AM (2003) The extent of Pleistocene ice cap, glacial deposits and glaciokarst in the Aladaglar massif: central Taurids range, southern Turkey. In: XVI INQUA Congress, Paper, 55360

    Google Scholar 

  • Bayrakdar C, Çilğin Z, Döker MF, Canpolat E (2015) Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turk J Earth Sci 24(1):56–71

    Article  Google Scholar 

  • Bennett RA, Hreinsdóttir S, Buble G, Bašić T, Bačić Ž, Marjanović M, Casale B, Gendaszek MA, Cowan D (2008) Eocene to present subduction of southern Adria mantle lithosphere beneath the Dinarides. Geology 36(1):3–6

    Article  Google Scholar 

  • Benson L, Madole R, Landis G, Gosse J (2005) New data for late Pleistocene Pinedale alpine glaciation from southwestern Colorado. Quatern Sci Rev 24(1):49–65

    Article  Google Scholar 

  • Bertrand G (1971) Morphostructures cantabriques: Picos de Europa, “Montaña” de León et de Palencia. Revue Geographique des Pyrenees et du Sud-Ouest 42(1):49–70

    Article  Google Scholar 

  • Biese WB (1956) Uber Karstvorkommen in Chile. Die Höhle 7:91–96

    Google Scholar 

  • Biese WB (1957) Auf der Marmor-Insel Diego de Almagro (Chile). Natur und Volk 87(4):123–132

    Google Scholar 

  • Bini A (1997) Problems and methodologies in the study of the Quaternary de- posits of the southern side of the Alps. Geologia Insubrica 2(2):11–20

    Google Scholar 

  • Bini A (1998) Rapporti tra evoluzione dei versanti e endocarso: studio dei sedimenti della grotta La Nevera (2693 LO CO) sul M. Generoso (Svizzera, Italia), Il Quaternario

    Google Scholar 

  • Bini A, Delannoy JJ, Maire R, Quinif Y (1989) Générations de cavités karstiques dans les chaînes alpines. C R Acad Sci Paris 309(2):1183–1190

    Google Scholar 

  • Bini A, Tognini P, Zuccoli L (1998) Rapport entre karst et glaciers durant les glaciations dans les vallées préalpines du Sud des Alpes. Karstologia 32:7–26 (Fédération française de spéléologie, Paris & Association française de karstologie, Bordeaux)

    Google Scholar 

  • Birkenmajer K (2008) Karst sink-holes in the Würm Glaciation deposits, subsurface drainage and extent of Triassic limestones in the Sucha Woda Valley, Polish Tatra Mts (West Carpathians). Stud Geol Pol 131:281–289

    Google Scholar 

  • Blasi C, Di Pietro R, Pelino G (2005) The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst Int J Dealing Aspects Plant Biol 139(3):357–385

    Google Scholar 

  • Bobrowsky P, Rutter N (1992) The quaternary geologic history of the Canadian Rocky Mountains. Géog Phys Quatern 46(1):5–50

    Google Scholar 

  • Bočić N, Faivre S, Kovačić M, Horvatinčić N (2012) Cave development under the influence of Pleistocene glaciation in the Dinarides–an example from Štirovača Ice Cave (Velebit Mt., Croatia). Z Geomorphol 56(4):409–433

    Article  Google Scholar 

  • Bočić N, Pahernik M, Mihevc A (2015) Geomorphological significance of the palaeodrainage network on a karst plateau: the Una-Korana plateau, Dinaric karst, Croatia. Geomorphology 247:55–65

    Article  Google Scholar 

  • Bodenhamer HG (2007) Preglacial development of caves at structural duplexes on the Lewis Thrust, Glacier National Park, Montana. J Cave Karst Stud 69(3):326–341

    Google Scholar 

  • Bögli A (1960) Kalklösung und Karrenbildung. Zeitsch f Geomorph N E 2:4–21

    Google Scholar 

  • Bognar A, Faivre S (2006) Geomorphological traces of the younger Pleistocene glaciation in the central part of the Velebit Mt. Hrvatski geografski glasnik 68(2):19–30

    Article  Google Scholar 

  • Bordonau J (1992) Els complexos gla’cio-lacustres relacionats amb el darrer cicle glacial als Pirineus. Geoformaediciones, Logrono

    Google Scholar 

  • Bosák P, Ford DC, Glazek J, Horácek I (eds) (2015) Paleokarst: a systematic and regional review, vol 1. Elsevier

    Google Scholar 

  • Bozkurt E, Mittwede SK (2001) Introduction to the geology of Turkey—a synthesis. Int Geol Rev 43(7):578–594

    Article  Google Scholar 

  • Braun DD (1989) Glacial and periglacial erosion of the Appalachians. Geomorphology 2(1–3):233–256

    Article  Google Scholar 

  • Butvilovskiy VV (1993) Paleogeografiya poslednego oledeneniya i golotsena Altaya: sobytiyno-katastroficheskaya model (Paleogeography of the last glaciation and the Holocene of Altai: catastrophic event model). Tomsk University, Tomsk, p 253

    Google Scholar 

  • Calvet M (2004) The Quaternary glaciation of the Pyrenees. In: Quaternary glaciations, extent and chronology, pp 120–128

    Google Scholar 

  • Calvet M, Delmas M, Gunnell Y, Braucher R, Bourlcs D (2011) Recent advances in research on Quaternary glaciations in the Pyrenees. Quaternary glaciations, extent and chronology, a closer look Part IV. Elsevier, Amsterdam, pp 127–139

    Book  Google Scholar 

  • Campbell N (1979) Alpine karst of the Scapegoat-Bob Marshall Wilderness and adjoining areas, North-Central Montana. NSS Bulletin 41:66–69

    Google Scholar 

  • Carulli GB (2006) Carta Geologica del Friuli venezia Giulia, 1:150,000—Servizio Geologica, Firenze

    Google Scholar 

  • Cendrero A, Saiz de Omenaca J (1979) Geology of the Picos de Europa; a brief outline. Mem Soc Bot Geneve 1:23–29

    Google Scholar 

  • Chardon M (1984) Le role des héritages quaternaires dans les karsts alpins: le cas des Alpes du Nord. 1er semester Karst des Alpes occidentales. Karstologia 3:12–14

    Article  Google Scholar 

  • Chardon M (1989) Les karsts de l’avant-pays alpin au N des Alpes occidentales. Karstologia 13:21–30

    Article  Google Scholar 

  • Chueca J, Peña Monné JL, Lampre F, Julián A (1997) La Pequeña Edad del Hielo en el Pirineo Central y Meridional. Inferencias paleoambientales a partir de datos geomorfológicos. In: Gomez A, Ortiz et Perez A (eds) Las huellas glaciares de las montañas españolas. Universidade de Santiago de Compostela, Spain, pp 307–328

    Google Scholar 

  • Chueca J, Julián A, Peña-Monné JL (2002) Comparación de la situación de los glaciares del Pirineo español entre el final de la Pequeña Edad del Hielo y la actualidad. Boletín Glaciológico Aragonés 3:13–41

    Google Scholar 

  • Çılğın Z, Bayrakdar C, Oliphant JS (2014) An example of polygenetic geomorphologic development (Karst-Glacial-Tectonics) on Munzur Mountains: Kepir Cave-Elbaba spring karstic system. J Hum Sci 11(1):89–104

    Article  Google Scholar 

  • Çiner A, Sarıkaya MA, Yıldırım C (2015) Late Pleistocene piedmont glaciations in the Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quatern Sci Rev 116:44–56

    Article  Google Scholar 

  • Clague JJ, Ward B (2011) Pleistocene Glaciation of British Columbia. In: Ehlers, Gibbard, Hughes (2011) Developments in quaternary sciences, vol 15. Elsevier, pp 563–573

    Google Scholar 

  • Cohen SM (2013) Geomorphological studies of a karst system in a permafrost environment at Linnédalen, western Spitsbergen. Master’s thesis

    Google Scholar 

  • Cooper M (2014) Verification of post-glacial speleogenesis and the origins of epigene maze caves in New York. M.Sc., dissertation, Mississippi State University

    Google Scholar 

  • Cooper MP, Mylroie JE (2015) Glaciation and speleogenesis. Springer

    Google Scholar 

  • Costantini EA, Fantappié M, L’Abate G (2013) Climate and pedoclimate of Italy. In: The soils of Italy, Springer, pp 19–37

    Google Scholar 

  • Coutterand S, Buoncristiani JF (2006) Paléogéographie du dernier maximum glaciaire du Pléistocene recent de la region du massif du Mont Blanc, France. Quaternaire 17(1):35–43

    Article  Google Scholar 

  • Cvijić J (1899) Glacijalne i morfološke studije o planinama Bosne, Hercegovine i Crne Gore. Glas Srpske Kraljevske Akademije Nauka, Beograd, vol 57, 196 p

    Google Scholar 

  • Cvijić J (1900) L’époque glaciaire dans la péninsule des Balkans. Annales de Géographie 9:359–372

    Article  Google Scholar 

  • Delannoy JJ (1986) Contribution a l’étude des circulations aquifères dans le géosystème Coulmes-Choranche; Présentation du site experimental de la Grotte de Coufin. Revue de Géographie Alpine 74(1–2):83–92

    Article  Google Scholar 

  • Delmas M (2009) Chronologie et impact géomorphologique de glaciation quaternaires dans l’est des Pyrénées. Géomorphologie. Université Panthéon-Sorbonne, Paris

    Google Scholar 

  • Dilek Y (2006) Collision tectonics of the Mediterranean region: causes and consequences. Geol Soc Am Spec Pap 409:1–13

    Google Scholar 

  • Djurović P (2009) Reconstruction of the pleistocene glaciers of Mount Durmitor in Montenegro. Geografski Zbornik/Acta Geographica Slovenica 49(2):263–289

    Article  Google Scholar 

  • Djurović P, Petrović A (2007) Large Canyons in Dinaric and Prokletije Mountains Region of Montenegro. Geographica Pannonica 11(1):14–18

    Article  Google Scholar 

  • Drew DP (1983) Accelerated soil erosion in a karst area: the Burren, western Ireland. J Hydrol 61(1–3):113–124

    Article  Google Scholar 

  • Ducić V, Luković J, Burić D, Stanojević G, Mustafić S (2012) Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types. Nat Hazards Earth Syst Sci 12(3):687–697

    Article  Google Scholar 

  • Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. Dev Quat Sci 2:373–424

    Google Scholar 

  • Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ (2002) The Laurentide and Innuitian ice sheets during the last glacial maximum. Quatern Sci Rev 21(1):9–31

    Article  Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (eds) (2011) Quaternary glaciations—extent and chronology: a closer look. Elsevier, 1126 p

    Google Scholar 

  • Ekmekci M (2003) Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta Carsologica 32(2):205–218

    Google Scholar 

  • Escobar F (1980) Mapa Geologico de Chile, escala 1/1,000,000 (feuille sud). Servicio Nacional de Geologia y Mineria, Departamento de Geologia General, Santiago

    Google Scholar 

  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, Capitanio FA, Funiciello F, Horváth F, Jolivet L, Piromallo C, Royden L, Rossetti F, Serpelloni E (2014) Mantle dynamics in the Mediterranean. Rev Geophys 52(3):283–332

    Article  Google Scholar 

  • Farrant AR, Simms MJ (2011) Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales. Cave Karst Sci 38(1):31–52

    Google Scholar 

  • Farrant AR, Smith CJ, Noble SR, Simms MJ, Richards DA (2014) Speleogenetic evidence from Ogof Draenen for a pre-Devensian glaciation in the Brecon Beacons, South Wales, UK. J Quat Sci 29(8):815–826

    Article  Google Scholar 

  • Faulkner T (2006) The impact of the deglaciation of central Scandinavia on karst caves and the implications for Craven’s limestone landscape. Re-thinking Craven’s Limestone Landscape, p 4

    Google Scholar 

  • Finnesand T, Curl RL (2009) Morphology of Tjoarvekrajgge, the longest cave of Scandinavia. In: 15th International congress of speleology proceedings, pp 878–883

    Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quatern Sci Rev 19(14):1413–1422

    Article  Google Scholar 

  • Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediatefield sites. Earth Planet Sci Lett 163(1–4):327–342

    Article  Google Scholar 

  • Ford DC (1971a) Alpine Karst in the Mt. Castleguard-Columbia Icefield Area, Canadian Rocky Mountains. Arct Alp Res 15(4):239–252

    Article  Google Scholar 

  • Ford DC (1971b) Alpine Karst in the Mt. Castleguard-Columbia Icefield Area, Canadian Rocky Mountains. Arct Alp Res 239–252

    Google Scholar 

  • Ford DC (1971c) Characteristics of limestone solution in the southern Rocky Mountains and the Selkirk Mountains, Alberta and British Columbia. Can J Earth Sci 8:585–609

    Article  Google Scholar 

  • Ford DC (1979) A review of alpine karst in the southern Rocky Mountains of Canada. NSS Bulletion 41:53–65

    Google Scholar 

  • Ford DC (1983a) Alpine Karst Systems at Crowsnest Pass, Alberta-British Columbia, Canada. J Hydrol 61(1):187–192

    Article  Google Scholar 

  • Ford DC (1983b) Concluding discussion. Arct Alp Res 61(1):551–554

    Article  Google Scholar 

  • Ford DC (1983c) The physiography of the Castleguard karst and Columbia icefields area, Alberta, Canada. Arct Alp Res 61(1):427–436

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, England

    Book  Google Scholar 

  • Ford DC, Smart PL, Ewers RO (1983) The physiography and speleogenesis of Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):437–450

    Article  Google Scholar 

  • Forsythe R, Mpodozis C (1983) Geología del basamento pre-jurasico superior en el archipiélago Madre de Dios, Magallanes, Chile. Servicio Nacional de geologia y Mineria, Chile, Boletin, vol 39, 63 p

    Google Scholar 

  • Gabrielse H (1985) Major dextral transcurrent displacements along the Northern Rocky Mountain Trench and related lineaments in north-central British Columbia. Geol Soc Am Bull 96(1):1–14

    Article  Google Scholar 

  • Gachev E, Stoyanov K, Gikov A (2016) Small glaciers on the Balkan Peninsula: State and changes in the last several years. Quatern Int 415:33–54

    Article  Google Scholar 

  • Gadek B, Litwin L (1999) Glaciokarst of subalpine and alpine zone of the Mala Laka Valley, Tatra Mts., Poland. Acta Carsologica 28(1):71–86

    Google Scholar 

  • García-Ruiz JM, Valero-Garcés BL, Beguería S, López-Moreno JI, Martí-Bono C, Serrano-Muela P, Sanjuan Y (2014) The Ordesa and Monte Perdido National Park, Central Pyrenees. Landscapes and landforms of Spain. Springer, Netherlands, pp 165–172

    Chapter  Google Scholar 

  • Garrity CP, Soller DR (2009) Database of the Geologic Map of North America; adapted from the map by Reed JC Jr. and others (2005) U.S. Geological Survey Data Series 424

    Google Scholar 

  • Gascoyne M, Latham AG, Harmon RS, Ford DC (1983) The antiquity of Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):463–470

    Article  Google Scholar 

  • Gillespie A, Molnar P (1995) Asynchronous maximum advances of mountain and continental glaciers. Rev Geophys 33(3):311–364

    Article  Google Scholar 

  • Giraudi C (2005) Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quatern Res 64(2):176–184

    Article  Google Scholar 

  • Giraudi C (2012) The Campo Felice Late Pleistocene Glaciation (Apennines, central Italy). J Quat Sci 27(4):432–440

    Article  Google Scholar 

  • Giraudi C (2015) The Upper Pleistocene deglaciation on the Apennines (Peninsular Italy). Cuadernos de investigación geográfica 41(41):337–358

    Article  Google Scholar 

  • Giraudi C, Giaccio B (2015) Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. Geol Soc Lond Spec Publ 433(1):161–178

    Article  Google Scholar 

  • Giraudi C, Bodrato G, Lucchi MR, Cipriani N, Villa IM, Giaccio B, Zuppi GM (2011) Middle and late Pleistocene glaciations in the Campo Felice Basin (central Apennines, Italy). Quatern Res 75(1):219–230

    Article  Google Scholar 

  • Godfrey AE (1985) Karst Hydrology of the South Slope of the Uinta Mountains, Utah. Geology and Energy Resources, Uinta Basin of Utah, pp 277–294

    Google Scholar 

  • Goldie HS (2006) Mature intermediate-scale surface karst landforms in NW England and their relations to glacial erosion. In: Kiss A, Mezősi G, Sümeghy Z (2006) Landscape, environment and society, pp 225–238

    Google Scholar 

  • Gremaud V, Goldscheider N (2010) Geometry and drainage of a retreating glacier overlying and recharging a karst aquifer, Tsanfleuron-Sanetsch, Swiss Alps. Acta carsologica 39(2):289–300

    Article  Google Scholar 

  • Gruber P, Gy Kovács, Sz Somlai (1998) Vertikális karsztformák vizsgálata az ausztriai Totes-Gebirgében. Karsztfejlődés 2:201–210

    Google Scholar 

  • Grund A (1910) Beiträge zur Geomorphologie des Dinarischen Gebirges. Geographische Abhandlungen 7(H3):121–125

    Google Scholar 

  • Grunewald K, Scheithauer J (2010) Europe’s southernmost glaciers: response and adaptation to climate change. J Glaciol 56(195):129–142

    Article  Google Scholar 

  • Gunn J (2004) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York

    Book  Google Scholar 

  • Gutak JM (2002) Evolyutsiya devonskikh basseynov sedimentatsii v Gornom Altae, Geologiya Devonskoy sistemy (Evolution of the Devonian sedimentation basins in the Altai Mountains Geology of the Devonian system). Materialy Mezhdunarodnogo simpoziuma, Syktyvkar, Respublika Komi, Rossiya, 9–12 iyulya 2002 g.: pp 18–20

    Google Scholar 

  • Gutak JM (2015a) Evolyutsiya obstanovok sedimentogeneza v zapadnoy chasti Altae-Sayanskoy skladchatoy oblasti (ASSO) v pozdnem dokembrii-paleozoe, Evolyutsiya osadochnykh protsessov v istorii Zemli (Evolution of sediment genesis environments of in the western part of the Altai-Sayan folded area (ASFA) in the Late Precambrian-Paleozoic. Evolution of sedimentary processes in the Earth’s history). Materialy 8-go Vserossiyskogo litologicheskogo soveshchaniya, Moskva 27–30 oktyabrya 2015 g., Moscow, Gubkin University) vol 1, pp 85–87

    Google Scholar 

  • Gutak JM (2015b) Paleozoyskie rify zapadnoy chasti Altae-Sayanskoy skladchatoy oblasti (paleotektonicheskie obstanovki obrazovaniya), Geologiya rifov (Paleozoic reefs of the western part of the Altai-Sayan folded area (paleotectonic environment of formation) Geology of reefs). Materialy Vserossiyskogo litologicheskogo soveshchaniya, Syktyvkar, Respublika Komi, Rossiya 15–17 iyunya 2015, pp 38–39

    Google Scholar 

  • Gutak JM, Batyaeva SK, Lyakhnitskiy VN, Fedak SI (2001) Yurskie otlozheniya Gornogo Altaya, Aktual’nye voprosy geologii i mineragenii yuga Sibiri (Jurassic deposits of the Altai Mountains Actual problems of geology and mineralogy of southern Siberia, Novosibirsk, pp 49–57

    Google Scholar 

  • Gutak JM, Bagmet GN, Valieva FL, Fedak SI (2004) Dokembriyskie otlozheniya basseyna r. Eskongo (Gornyy Altay), Priroda i ekonomika Kuzbassa (Precambrian sediments of the river Eskongo basin (the Altai Mountains) Nature and the economy of Kuzbass). Novokuznetsk, Geologiya i paleontologiya 9:8–13

    Google Scholar 

  • Gutak JM, Antonova VA, Bagmet GN, Gabova MF, Savitskiy VR, Tolokonnikova ZA (2008) Ocherki po istoricheskoy geologii Kemerovskoy oblasti (Essays on historical geology of the Kemerovo region). Novokuznetsk, KuzSPA, 132 p

    Google Scholar 

  • Gvozdetskij NA (1981) Karst (Karst). Mysl’, Moscow (214 p)

    Google Scholar 

  • Gvozdetskij NA, Golubtchikov YN (1987) Gory (Mountains). Mysl’, Moscow (399 p)

    Google Scholar 

  • Hallet B (1976) Deposits formed by subglacial precipitation of CaCO3. Geol Soc Am Bull 87(7):1003–1015

    Article  Google Scholar 

  • Harmon RS (1979) U-series dating of speleothems and a glacial chronology for western North America. NSS Bulletin 41:102–104

    Google Scholar 

  • Harmon RS, Ford DC, Schwarcz HP (1977) Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Th–234U dating of calcite speleothems. Can J Earth Sci 14(11):2543–2552

    Article  Google Scholar 

  • Hercman H, Bella P, Głazek J, Gradziński M, Lauritzen SE, Løvlie R (1997) Uranium-series dating of speleothems from Demanova Ice Cave: a step to age estimation of the Demanova Cave System (the Nizke Tatry Mts., Slovakia). In: Annales Societatis Geologorum Poloniae, vol 67, no 4, pp 439–450

    Google Scholar 

  • Hinnov LA (2003) Lofer Cyclothems in the Dachstein Limestone of the Julian Alps. Geol Soc Am Abstr Programs 35(6):426

    Google Scholar 

  • Horn G (1935) Űber die Bildung von Karsthöhlen unter einem Gletcher. Nor Geogr Tidsskr 5:494–498

    Article  Google Scholar 

  • Hughes P (2007) Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surf Process Land 32(10):1593–1602

    Article  Google Scholar 

  • Hughes P (2008) Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr Ann: Ser A, Phys Geogr 90(4):259–267

    Article  Google Scholar 

  • Hughes PD, Woodward JC (2017) Quaternary Glaciation in the Mediterranean Mountains: a new synthesis. Geol Soc Lond Spec Publ 433:1–23

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2003) Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum(Late Wuermian) in northwest Greece. J Quat Sci 18(5):431–440

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Gibbard PL, Macklin MG, Gilmour MA, Smith GR (2006) The glacial history of the Pindus Mountains, Greece. J Geol 114(4):413–434

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Woodward JC (2007) Geological controls on Pleistocene glaciation and Cirque form in Greece. Geomorphology 88(3):242–253

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Van Calsteren PC, Thomas LE, Adamson KR (2010) Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quatern Sci Rev 29(27):3690–3708

    Article  Google Scholar 

  • Hughes PD, Woodward JC, Van Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quatern Sci Rev 30(23):3393–3412

    Article  Google Scholar 

  • Hulton N, Sugden D, Payne A, Clapperton C (1994) Glacier modeling and the climate of Patagonia during the last glacial maximum. Quatern Res 42(1):1–19

    Article  Google Scholar 

  • Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Maraldo L, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2013) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34(5):1657–1675

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW, Schlüchter C (2008) Chronology of the last glacial cycle in the European Alps. J Quat Sci 23(6–7):559–573

    Article  Google Scholar 

  • Jaillet S, Lans B, Maire R, Tourte B, L’équipe Ultima Patagonia-2006 (2008) Héritage glaciaire et karstification de l’archipel calcaire de Madre de Dios - Patagonie, Chili. Actes colloque AFK, Sion, Edytem, Cahiers de géographie, vol 7, pp 39–50

    Google Scholar 

  • Jin S, Tian X, Feng G (2016) Recent glacier changes in the Tien Shan observed by satellite gravity measurements. Glob Planet Change 143:81–87

    Article  Google Scholar 

  • Jurewicz E (2005) Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geol Pol 55(3):295–338

    Google Scholar 

  • Kalesnik SV (1935) Ledniki verkhovev Bol’shogo Naryna, Tjan’ Shan’ (Glaciers of the upper Big Naryn, Tian Shan). Trudy lednokovykh epspeditsij 2:83–186

    Google Scholar 

  • Karpunin AM, Mamonov SV, Mironenko OA, Sokolov AR (1998) Geologicheskie pamyatniki prirody Rossii: K 300-letiyu gorno-geologicheskoy. sluzhby Rossii, 1700–2000 (Russian geological sites. 300th anniversary of Russian Mining and Geological Service, 1700–2000). S-Petersburg, 200 p

    Google Scholar 

  • Khromova T, Nosenko G, Kutuzov S, Muraviev A, Chernova L (2014) Glacier area changes in Northern Eurasia. Environ Res Lett 9:015003

    Article  Google Scholar 

  • King PB (2015) Evolution of North America. Princeton University Press

    Google Scholar 

  • Klimchouk A, Nazik L, Bayari S, Tork K, Kasjan Y (2004) Kuzgun Cave and its Context: the first super-deep cave in the Aladaglar Massif, Turkey

    Google Scholar 

  • Klimchouk A, Bayari S, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus, Turkey. Acta Carsologica 35(2):111–121

    Google Scholar 

  • Klimchouk AB, Samokhin GV, Kasian Y (2009) The deepest cave in the world in the Arabika massif (Western Caucasus) and its hydrogeological and paleogeographic significance. In: Proceedings of 15th international congress of Kerrville, Texas, pp 898–905

    Google Scholar 

  • Kostin PA (1966) Karst Peredovogo khrebta i polosy kuest Severo-Zapadnogo Kavkaza (Karst of the Peredovoj Range of the stripe of cuestas of the Northwestern Caucasus). Moscow, 25 p

    Google Scholar 

  • Kotarba A, Hercman H, Dramis F (2001) On the age of Campo Imperatore glaciations, Gran Sasso Massif, Central Italy. Geogr Fis Dinam Quat 24:65–69

    Google Scholar 

  • Kranjc A (2006) Some large dolines in the Dinaric karst. Speleogenesis Evol Karst Aquifers 4(1):1–4

    Google Scholar 

  • Krasnaya kniga Altayskogo kraya (2009) Osobo okhranyaemye prirodnye territorii (The Red Book of the Altai Territory. Protected areas), Barnaul (273 p)

    Google Scholar 

  • Křížek M, Mida P (2013) The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology 198:57–68

    Article  Google Scholar 

  • Kuhlemann J, Milivojevic M, Krumrei I, Kubik PW (2009) Last glaciation of the Šara range (Balkan peninsula): increasing dryness from the LGM to the Holocene. Austrian J Earth Sci 102(1):146–158

    Google Scholar 

  • Kuhlemann J, Gachev E, Gikov A, Nedkov S, Krumrei I, Kubik P (2013) Glaciation in the Rila Mountains (Bulgaria) during the last glacial maximum. Quatern Int 293:51–62

    Article  Google Scholar 

  • Kunaver J (1983) Geomorphology of the Kanin Mountains with special regard to the glaciokarst. Geografski zbornik 22:201–344

    Google Scholar 

  • Kurter A (1991) Glaciers of Turkey. Satellite image atlas of glaciers of the world, US Geological Survey Washington, G1-G30

    Google Scholar 

  • Lambán LJ, Jódar J, Custodio E, Soler A, Sapriza G, Soto R (2015) Isotopic and hydrogeochemical characterization of high-altitude karst aquifers in complex geological settings. The Ordesa and Monte Perdido National Park (Northern Spain) case study. Sci Total Environ 506:466–479

    Article  Google Scholar 

  • Lambeck K (1995) Late Pleistocene and Holocene sea-level change in Greece and south-western Turkey: a separation of eustatic, isostatic and tectonic contributions. Geophys J Int 122(3):1022–1044

    Article  Google Scholar 

  • Lauritzen SE (1984) A symposium: arctic and alpine karst. Nor Geogr Tidsskr-Norw J Geogr 38(3–4):139–143

    Article  Google Scholar 

  • Lauritzen SE (1986) Kvithola at Fauske; Northern Norway: an example of ice-contact speleogenesis. Nor Geol Tidsskr 66(2):153–161

    Google Scholar 

  • Lauritzen SE (2005) Quaternary speleogenesis and landscape evolution in Scandinavia and Svalbard. In: 14th International congressof speleology, Athen, vol O-64, pp 1–4

    Google Scholar 

  • Lauritzen SE (2006) Caves and speleogenesis at Blomstrandsøya, Kongsfjord, W. Spitsbergen. Int J Speleol 35(1):37–58

    Article  Google Scholar 

  • Lauritzen SE, Gascoyne M (1980) The first radiometric dating of Norwegian stalagmites–Evidence of pre-Weichselian karst caves. Nor Geogr Tidsskr 34:77–82

    Article  Google Scholar 

  • Lauritzen SE, Mylroie JE (2000) Results of a speleothem U/Th dating reconnaissance from the Helderberg Plateau, New York. J Cave Karst Stud 62(1):20–26

    Google Scholar 

  • Lauritzen SE, Skoglund RØ (2013) Glacier ice-contact speleogenesis. Treatise Geomorphol 6:363–396

    Article  Google Scholar 

  • Leonard EM (1989) Climatic change in the Colorado Rocky Mountains: estimates based on modern climate at late Pleistocene equilibrium lines. Arct Alp Res 245–255

    Google Scholar 

  • Lepirica A (2008) Geomorphological characteristics of the massif Prenj. Acta Carsologica 37(2–3):307–329

    Google Scholar 

  • Lindner L, Dzierżek J, Marciniak B, Nitychoruk J (2003) Outline of Quaternary glaciations in the Tatra Mountains: their development, age and limits. Geol Q 47(3):269–280

    Google Scholar 

  • Lindner L, Dzierżek J, Marciniak B, Nitychoruk J (2010) Outline of Quaternary glaciations in the Tatra Mts.: their development, age and limits. Geol Q 47(3):269–280

    Google Scholar 

  • Litwin L, Andreychouk V (2008) Characteristics of high-mountain karst based on GIS and remote sensing. Environ Geol 54:979–994

    Article  Google Scholar 

  • Lóczy D, Stankoviansky M, Kotarba A (eds) (2012) Recent landform evolution: the Carpatho-Balkan-Dinaric region. Springer

    Google Scholar 

  • Lozovoj SP (1984) Lagonakskoe nagor’e (Lagonaki Highland). Krasnodarskoe knizhnoe izdatel’stvo, Krasnodar, p 160

    Google Scholar 

  • Maire R (1990) La haute montagne calcaire: karsts, cavités, remplissages, paléoclimats, Quaternaire. Thèse d’Etat, Univ. de Nice, Karstologia-mémoires 3, La Ravoire, 731 p

    Google Scholar 

  • Maire R (1999) Les glaciers de marbre de Patagonie, Chili. Un karst subpolaire océanique de la zone australe. Karstologia 33:25–40

    Google Scholar 

  • Makos M, Nitychoruk J, Zreda M (2013) Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, high Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier–climate modelling. Quatern Int 293:63–78

    Article  Google Scholar 

  • Makos M, Dzierżek J, Nitychoruk J, Zreda M (2014) Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quatern Res 82(1):1–13

    Article  Google Scholar 

  • Mangerud J, Gyllencreutz R, Lohne Ö, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD (2011) Quaternary glaciations-extent and chronology: a closer look. Elsevier

    Google Scholar 

  • Marjanac L, Marjanac T (2004) Glacial history of the Croatian Adriatic and coastal Dinarides. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations. Developments in quaternary science, vol 2, pp 19–26

    Google Scholar 

  • Marjanac T, Marjanac L (2016) The extent of middle Pleistocene ice cap in the coastal Dinaric Mountains of Croatia. Quatern Res 85(3):445–455

    Article  Google Scholar 

  • Martí Bono C, García-Ruiz J (eds) (1994) El Glaciarismo surpirenaico: nuevas aportaciones. Geoforma Ediciones, Logroño, p 142

    Google Scholar 

  • Martinetto E, Ravazzi C (1997) Plant biochronology of the Valle della Fornace succession (Varese) based on the Plio-Pleistocene record in northern Italy. Geologia Insubrica 2(2):81–98

    Google Scholar 

  • Maslyn RM, Davis DG (1979) Karst development on the White River Plateau, Colorado. NSS Bulletin 41:95–101

    Google Scholar 

  • Mavlyudov BR (2004) Lednikovyj karst (Glacial karst). In: Karstovedenie – XXI vek: teoretitcheskoe i praktitcheskope znatchenie, 25–30 May 2004. Perm’, pp 69–74

    Google Scholar 

  • McMillan ME, Heller PL, Wing SL (2006) History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau. Geol Soc Am Bull 118(3–4):393–405

    Article  Google Scholar 

  • Medville DM, Hempel JC, Plantz C, Werner E (1979) Solutional landforms on carbonates of the Southern Teton Range Wyoming. NSS Bulletin 41:70–79

    Google Scholar 

  • Menkovic L, Markovic M, Cupkovic T, Pavlovic R, Trivic B, Banjac N (2004) Glacial morphology of Serbia, with comments on the Pleistocene Glaciation of Monte Negro, Macedonia and Albania. Dev Quat Sci 2:379–384

    Google Scholar 

  • Mercer JH (1976) Glacial history of southern most South America. Quatern Res 6:125–166

    Article  Google Scholar 

  • Merritt JW, Auton CA, Connell ER, Hall AM, Peacock JD (2003) Cainozoic geology and landscape evolution of north-east Scotland. British Geological Survey, Edinburgh

    Google Scholar 

  • Mihevc A, Prelovšek M, Hajna NZ (eds.) (2010) Introduction to the Dinaric karst. Inštitut za raziskovanje krasa ZRC SAZU, 71 p

    Google Scholar 

  • Milivojević M (2007) Glacial relief of Mts. Volujak, Bioć and Maglić. Geogr Inst Jovan Cvijić Spec Issue 68:1–132

    Google Scholar 

  • Milivojević M, Menković L, Ćalić J (2008) Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quatern Int 190(1):112–122

    Article  Google Scholar 

  • Miotke FD (1968) Karstmorphologische Studien in der glacial-überformten Höhenstufe der Picos de Europa, Nordspanien. Selbtverlag der Geografhischen Gessesllschaft Hannover, p 4

    Google Scholar 

  • Moles NR, Moles RT (2002) Influence of geology, glacial processes and land use on soil composition and Quaternary landscape evolution in The Burren National Park, Ireland. Catena 47(4):291–321

    Article  Google Scholar 

  • Montserrat-Martí JM (1992) Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. Monografías del Instituto Pirenaico de Ecología 6:1–147

    Google Scholar 

  • Munroe JS (2006) Investigating the spatial distribution of summit flats in the Uinta Mountains of northeastern Utah, USA. Geomorphology 75(3):437–449

    Article  Google Scholar 

  • Murphy P, Westerman AR, Clark R, Booth A, Parr A (2008) Enhancing understanding of breakdown and collapse in the Yorkshire Dales using ground penetrating radar on cave sediments. Eng Geol 99(3):160–168

    Article  Google Scholar 

  • Murphy PJ, Faulkner TL, Lord TC, Thorp JA (2015) The caves of Giggleswick Scar-examples of deglacial speleogenesis? Cave and Karst Science 42(1):42–53

    Google Scholar 

  • Orvošová M, Deininger M, Milovský R (2014) Permafrost occurrence during the Last Permafrost Maximum in the Western Carpathian Mountains of Slovakia as inferred from cryogenic cave carbonate. Boreas 43(3):750–758

    Article  Google Scholar 

  • Oxaal L (1914) Kalkstenshuler i Ranen. Norg Geol Unders 69:1–47

    Google Scholar 

  • Øystese A, Johannesen F, Lauritzen SE (2005) Speleogenesis and landscape evolution in Tromsdalen karst, Verdal, Norway. In: 14th international congressof speleology, Athen, vol P-14, pp 1–2

    Google Scholar 

  • Pallás R, Rodés A, Braucher R, Carcaillet J, Ortuno M, Bordonau J, Bourlcs D, Vilaplana JM, Masana E, Santanach P (2006) Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quatern Sci Rev 25(21–22):2937–2963

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Palmer AN (2003) Speleogenesis in carbonate rocks. Speleogenesis Evol Karst Aquifers 1(1):2–11

    Google Scholar 

  • Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the Central Dinarides. Tectonophysics 297(1):251–268

    Article  Google Scholar 

  • Panov DV (1993) Evoljutsija sovremennogo oledenenija Kavkaza (Evolution of the modern glaciation of the Caucasus). Sankt-Peterburg, Gidrometeoizdat, 432 pp. (in Russian)

    Google Scholar 

  • Penck A (1885) La Période glaciaire dans les Pyrénées. Bulletin de la Societe d’histoire naturelle de Toulouse 19:105–200

    Google Scholar 

  • Penck A, Brückner E (1901–1909) Die Alpen im Eiszeitalter, Christian-Herman Tauchnitz, Leipzig 1199 p

    Google Scholar 

  • Petrović AS (2014) A Reconstruction of the Pleistocene Glacial Maximum in the Žijovo Range (Prokletije Mountains, Montenegro). Geografski Zbornik/Acta Geographica Slovenica 54(2)

    Google Scholar 

  • Piccini L, Zanchetta G, Drysdale RN, Hellstrom J, Isola I, Fallick AE, Leone G, Doveri M, Mussi M, Mantelli F, Molli G, Lotti L, Roncioni A, Regattieri E, Meccheri M, Vaselli L (2008) The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growth. Int J Speleol 37(3):153–172

    Article  Google Scholar 

  • Pierce KL (2003) Pleistocene glaciations of the Rocky Mountains. Dev Quat Sci 1:63–76

    Google Scholar 

  • Pope RJ, Hughes PD, Skourtsos E (2015) Glacial history of Mt Chelmos, Peloponnesus, Greece. Geol Soc Lond Spec Publ 433(1):211–236

    Article  Google Scholar 

  • Pulina M (1974) Preliminary studies on denudation in SW Spitsbergen. Bulletin de l’Academie Polonaise des Sciences-Serie des Sciences de la Terre 22(2):83–89

    Google Scholar 

  • Quinif Y, Maire R (1998) Pleistocene deposits in Pierre Saint-Martin cave, French Pyrenees. Quatern Res 49:37–50

    Article  Google Scholar 

  • Ridge JC (2004) The Quaternary glaciation of western New England with correlations to surrounding areas. Dev Quat Sci 2:169–199

    Google Scholar 

  • Ridush BT (1993) Petschera Syjkyrduu na Vostotchnom Pamire (The Syjkyrduu Cave in the Eastern Pamir). Svet 1–2:5–9

    Google Scholar 

  • Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, Aranburu A (2014) Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, North Iberia (43–42°N/7–2°W). Quatern Int 364:6–21

    Article  Google Scholar 

  • Ruban DA (2013) The Greater Caucasus—a Galatian or Hanseatic terrane? Comment on “The formation of Pangea” by G.M. Stampfli, C. Hochard, C. Verard, C. Wilhem and J. von Raumer (Tectonophysics 593 (2013) 1-19). Tectonophysics 608:1442–1444

    Article  Google Scholar 

  • Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle east Paleozoic plate tectonics. GeoArabia 12:35–56

    Google Scholar 

  • Rudoy AN (2005) Gigantskaya ryab’ techeniya, istoriya issledovaniy, diagnostika, paleogeograficheskoe znachenie (Giant stream ripple, history of research, diagnostics, paleogeographic value). Tomsk, 224 p

    Google Scholar 

  • Salvigsen O, Elgersma A (1985) Large-scale karst features and open taliks at Vardeborgsletta, outer Isfjorden, Svalbard. Polar Res 3(2):145–153

    Article  Google Scholar 

  • Sarıkaya MA, Zreda M, Çiner A, Zweck C (2008) Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quatern Sci Rev 27(7):769–780

    Article  Google Scholar 

  • Sarıkaya MA, Ciner A, Zreda M (2011) Quaternary glaciations of Turkey. Dev Quat Sci 15:393–403

    Google Scholar 

  • Sarıkaya MA, Çiner A, Haybat H, Zreda M (2014) An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quatern Sci Rev 88:96–109

    Article  Google Scholar 

  • Schoenbohm LM, Chen J, Stutz J, Sobel ER, Thiede RC, Kirby B, Strecker MR (2014) Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation. Geomorphology 221:1–17

    Article  Google Scholar 

  • Schroeder J, Ford DC (1983) Clastic sediments in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):451–461

    Article  Google Scholar 

  • Seefeldner E (1961) Salzburg und seine Landschaften. Eine geographische Landeskunde. Salzburg/Stuttgart, Das Bergland-Buch, 573 p

    Google Scholar 

  • Sejrup HP, Hjelstuen BO, Dahlgren KT, Haflidason H, Kuijpers A, Nygård A, Praeg D, Stoker MS, Vorren TO (2005) Pleistocene glacial history of the NW European continental margin. Mar Pet Geol 22(9):1111–1129

    Article  Google Scholar 

  • Serrano E, González-Trueba JJ, González-García M (2012) Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quatern Res 78:303–314

    Article  Google Scholar 

  • Serrano E, Gomez-Lende M, Gonzalez-Trueba JJ, Turu V, Ros S (2013) Fluctuaciones glaciares pleistocenas en las Monta ~ nas Pasiegas (Cordillera Cantabrica). Cuaternario y Geomorfología 27:91–110

    Google Scholar 

  • Skoglund RØ, Lauritzen SE (2010) Morphology and speleogenesis of Okshola (Fauske, northern Norway): example of a multi-stage network cave in a glacial landscape. Norw J Geol 90:123–137

    Google Scholar 

  • Skoglund RØ, Lauritzen SE (2011) Subglacial maze origin in low-dip marble stripe karst: examples from Norway. J Cave Karst Stud 73(1):31–43

    Article  Google Scholar 

  • Skoglund RØ, Lauritzen SE (2013) Characterisation of a post-glacial invasion aquifer: the Grønli-Seter karst system, northern Norway. Norw J Geol 93(1):61–73

    Google Scholar 

  • Skoglund RØ, Lauritzen SE, Gabrovšek F (2010) The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: a modelling approach. J Hydrol 388(1):157–172

    Article  Google Scholar 

  • Smart CC (1983) The hydrology of the castleguard karst, columbia icefields, Alberta, Canada. Arct Alp Res 61(1):471–486

    Article  Google Scholar 

  • Smart PL (1986) Origin and development of glaciokarst closed depressions in the Picos de Europa, Spain. Z Geomorphol 30:423–443

    Google Scholar 

  • Smith GW, Nance RD, Genes AN (2006) Pleistocene glacial history of Mount Olympus, Greece: Neotectonic uplift, equilibrium line elevations, and implications for climatic change. Geol Soc Am Spec Pap 409:157–174

    Google Scholar 

  • Solomina O, Bushueva I, Dolgova E, Jomelli V, Alexandrin M, Mikhalenko V, Matskovsky V (2016) Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Glob Planet Change 140:28–58

    Article  Google Scholar 

  • Spangler LE (2001) Delineation of recharge areas for karst springs in Logan Canyon, Bear River Range, northern Utah. In: US Geological Survey Karst Interest Group Proceedings. Water-Resources Investigations Report, 01-4011

    Google Scholar 

  • Stea RR (2004) The Appalachian glacier complex in maritime Canada. Dev Quat Sci 2:213–232

    Google Scholar 

  • Stepišnik U, Žebre M (2011) Glaciokras Lovčena, E-Geograff 2. Univerza v Ljubljani, Filozofska faklulteta, Ljubljana

    Google Scholar 

  • Stepišnik U, Ferk M, Kodelja B, Medenjak G, Mihevc A, Natek K, Žebre M (2009) Glaciokarst of western Orjen, Montenegro. Cave Karst Sci 36(1):21–28

    Google Scholar 

  • Stepišnik U, Grlj A, Radoš D, Žebre M. (2016) Geomorphology of Blidinje, Dinaric Alps (Bosnia and Herzegovina). J Maps 12(sup1):163–171

    Google Scholar 

  • Stokes CR, Gurney SD, Shahgedanova M, Popovnin V (2006) Late-20th-century changes in glacier extent in the Caucasus Mountains, Russia/Georgia. J Glaciol 52:99–109

    Article  Google Scholar 

  • Sturchio NC, Pierce KL, Murrell MT, Sorey ML (1994) Uranium-series ages of travertines and timing of the last glaciation in the northern Yellowstone area, Wyoming-Montana. Quatern Res 41(3):265–277

    Article  Google Scholar 

  • Styllas MN, Schimmelpfennig I, Ghilardi M, Benedetti L (2015) Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene 26(5):709–721

    Article  Google Scholar 

  • Sugden DE, Bentley MJ, Fogwill CJ, Hulton NRJ, McCulloch RD, Purves RS (2005) Late-glacial events in Southernmost South America: a blend of “Northern” and “Southern” hemispheric climatic signals? Geogr Ann Ser A Phys Geogr 87(2):273–288

    Google Scholar 

  • Svendsen JI, Mangerud J (1987) Late Weichselian and Holocene sea-level history for a cross-section of western Norway. J Quat Sci 2(2):113–132

    Article  Google Scholar 

  • Szczygieł J (2015) Cave development in an uplifting fold-and-thrust belt: case study of the Tatra Mountains, Poland. Int J Speleol 44(3):341–359

    Article  Google Scholar 

  • Szczygieł J, Gaidzik K, Kicińska D (2015) Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts., Poland. Ann Soc Geol Pol 85(2):387–404

    Google Scholar 

  • Szulc-Rojan E (1995) The contemporary glaciers of Pamirs. Czasopismo Geograficzne 66:303–315

    Google Scholar 

  • Taillefer F (1963) La carte de Morphologie glaciaire des Pyrénées au 1/50,000, Feuilles de Foix et de Vicdessos. Revue Géographique des Pyrénées et du Sud-Ouest 34:5–10

    Google Scholar 

  • Taillefer F (1964) Glaciaire pyrénéen: versant nord et versant sud. R.G.P.S.O. 28(3):221–243

    Google Scholar 

  • Taillefer F (1969) Les Glaciations des Pyrénnées. In: Actes 8ème congrès international INQUA, Supplément du Bulletin de l’Association Française pour l’Etude du Quaternaire, pp 19–32

    Google Scholar 

  • Taillefer F (1977) Le glacier de l’Aričge dans le bassin de Tarascon. Revue Géographique des Pyrénées et du SudOuest 48:269–286

    Article  Google Scholar 

  • Taillefer F (1985) Idées actuelles sur les glaciations dans les Pyrénées de l’Ariège. Revue Géographique des Pyrénées et du Sud-Ouest 56:323–338

    Article  Google Scholar 

  • Talour B (1976) Hydrogéologie karstique du Massif du Grand Som (Chartreuse, Isere) – Grenoble. Institut de Géologie, These de 3eme cycle, 166 p

    Google Scholar 

  • Tawadros E, Ruban D, Efendiyeva M (2006) Evolution of NE Africa and the Greater Caucasus: common patterns and petroleum potential. In: The Canadian Society of Petroleum Geologists, the Canadian Society of Exploration Geophysicists, the Canadian Well Logging Society Joint Convention, 15–18 May 2006. Calgary, pp 531–538

    Google Scholar 

  • Telbisz T (2010a) Morphology and GIS-analysis of closed depressions in Sinjajevina Mts (Montenegro). Karst Dev 1(1):41–47

    Google Scholar 

  • Telbisz T (2010b) Glacio-karst features of the Sinjajevina Mts (Montenegro): an overview and DEM-analysis. Karst Dev 1(1):17–22

    Google Scholar 

  • Telbisz T, Dragušica H, Nagy B (2009) Doline Morphometric Analysis and Karst Morphology of Biokovo Mt (Croatia) Based on Field Observations and Digital Terrain Analysis. Croat Geogr Bull 71(2):5–22

    Google Scholar 

  • Telbisz T, Mari L, Szabó L (2011) Geomorphological characteristics of the Italian side of Canin massif (Julian Alps) using digital terrain analysis and field observations. Acta Carsologica 40(2):255–266

    Article  Google Scholar 

  • Tóth G (2003) Karrenmorphologische Forschungen im Dachstein und im Toten-Gebirge. Gmundner Geo-Studien 2, Beiträge zur Geologie des Salzkammerguts, pp 191–198

    Google Scholar 

  • Tóth G (2004) Karrenmorphologische Forschungen im Dachstein und im Toten-Gebirge. In: Weidinger JT, Lobitzer H, Spitzbart I. Beiträge zur Geologie des Salzkammerguts, Gmundner Geo-Studien 2. Erkudok-Institut; Museum Gmunden, Gmunden, pp 191–198

    Google Scholar 

  • Tóth G (2008) Une nouvelle approche du systeme des lapiés alpins nus. Karsts de montagne. Géomorphologie, patrimoine et ressource. Chambéry, Université de Savoie, pp 147–156

    Google Scholar 

  • Tóth G (2009) Karren features in the Dachstein mountain. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features: Karren sculpturing. Postojna, Ljubljana, Zalozba ZRC, pp 313–322

    Google Scholar 

  • Tóth G, Reynard E (2011) Developpement et spécificités des cellules lapiazées sur Lapiaz de Tsanfleuron (Alpes Bernoises, Suisse). Z Geomorphol 55(2):231–245

    Article  Google Scholar 

  • Tronov MV (1948) Ocherki oledeneniya Altaya (Glaciers and climate). Gidrometeoizdat, Leningrad (407 p)

    Google Scholar 

  • Tronov MV (1966) Ledniki i klimat (Essays on Altai glaciation). Geografiz, Moscow (376 p)

    Google Scholar 

  • Turkin YA, Fedak SI (2008) Geologiya i veshchestvennye kompleksy Gornogo Altaya (Geology and compositional complexes of the Altai Mountains). Tomsk, 460 p

    Google Scholar 

  • Uggeri A, Felber M, Bini A, Bignasca C, Ravazzi C (1994) La successione della Val Fornace, I depositi Plio-Quaternari e l’evoluzione del territorio varesino, Milano, pp 63–92

    Google Scholar 

  • Uggeri A, Felber M, Bini A, Ravazzi C, Bignasca C, Heller F (1995) Pliocene-Pleistocene environmental evolution in the Varese region (NW Lombardia, Northern Italy): evidence of a Pliocene glaciation. In: Abstracts XIV international congress INQUA, Berlin, Terra Nostra, 2/95, 280 p

    Google Scholar 

  • Urdea P (2004) The Pleistocene glaciation of the Romanian Carpathians. Dev Quat Sci 2:301–308

    Google Scholar 

  • van der Meer JJ, van Tatenhove FG (1992) Drumlins in a full alpine setting: some examples from Switzerland. Geomorphology 6(1):59–67

    Article  Google Scholar 

  • Van Husen D (2000) Geological processes during the Quaternary. Mitt Österr Geol Ges 92:135–156

    Google Scholar 

  • Velić J, Velić I, Kljajo D (2011) Sedimentary bodies, forms and occurrences in the Tudorevo and Mirovo glacial deposits of northern Velebit (Croatia). Geologia Croatica 64(1):1–16

    Article  Google Scholar 

  • Veress M (2010) Karst environments: Karren formation in high mountains. Springer, Netherlands, p 230

    Book  Google Scholar 

  • Veress M (2016a) Covered karsts. Springer, Dordrecht, p 536

    Book  Google Scholar 

  • Veress M (2016b) Postglacial evolution of paleodepressions in glaciokarst areas of the Alps and Dinarides. Z Geomorphol 60(4):343–358

    Article  Google Scholar 

  • Veress M (2017) Solution doline development on glaciokarst in alpine and dinaric areas. Earth-Sci Rev 173:31–48

    Article  Google Scholar 

  • Veress M, Tóth G, Zentai Z, Czöpek I (2003) Vitesse de recul d’un escarpement lapiazé (Ile Diego de Almagra, Patagonia, Chili). Karstologia 41(1):23–26

    Google Scholar 

  • Veress M, Szunyogh G, Zentai Z, Tóth G, Czöpek I (2006) The effect of wind on karren formation on the Island of Diego de Almagra (Chile). Z Geomorphol 50(4):425–445

    Google Scholar 

  • Veress M, Zentai Z, Péntek K, Döbröntei L (2014) A Léna pillérei. Földrajzi Közlemények 138(1):17–36

    Google Scholar 

  • Vilaplana JM, Montserrat J, Schlüchter C (1989) Recent progress in Quaternary stratigraphy: the Lake Llauset séquence in the Spanish Pyrenees. In: Rose J, Schlüchter C (eds) Quaternary type sections: imagination or reality?. Balkema, Rotterdam, pp 113–124

    Google Scholar 

  • Viles HA (2003) Conceptual modelling of the impacts of climate change on karst geomorphology in the UK and Ireland. J Nat Conserv 11(1):59–66

    Article  Google Scholar 

  • Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 220(3):333–360

    Article  Google Scholar 

  • Waltham AC (1978) The caves and karst of Astraka, Greece. Trans Br Cave Res Assoc 5:1–12

    Google Scholar 

  • Waltham T, Lowe D (eds) (2013) Caves and Karst of the Yorkshire Dales, vol 1. British Cave Research Association, Buxton, 264 p

    Google Scholar 

  • Waltham AC, Simms MJ, Farrant AR, Goldie HS (1997) Karst and caves of Great Britain. In: Geological conservation review, vol 12, 358 p

    Google Scholar 

  • Washburn AL (1979) A survey of periglacial processes and environments. Geocryology, 406 p

    Google Scholar 

  • Weary DJ (2008) Preliminary Map of potentially karstic carbonate rocks in the central and southern Appalachian states, No. 2008-1154, Geological Survey (US)

    Google Scholar 

  • Weingartner H (1983) Geomorphologische Studien im Tennengebirge. Im Selbstverlag des Institutes für Geographie der Universität Salzburg, 196 p

    Google Scholar 

  • Weremeichik JM, Mylroie JE (2014) Glacial Lake Schoharie: an investigative study of glaciolacustrine lithofacies in caves, Helderberg Plateau, Central New York. J Cave Karst Stud 76(2):127–138

    Article  Google Scholar 

  • Werner E (1979) Alpine karst in the Rocky Mountains—introduction to the symposium. NSS Bulletin 41:51–52

    Google Scholar 

  • White WB (1979) Karst landforms in the Wasatch and Uinta Mountains, Utah. NSS Bulletin 41:80–88

    Google Scholar 

  • Williams PW (1966) Limestone pavements with special reference to western Ireland. Trans Inst Br Geogr 155–172

    Google Scholar 

  • Wilson JR (1979) Glaciokarst in the Bear River Range, Utah. NSS Bulletin 41:89–94

    Google Scholar 

  • Wilson P, Lord T, Rodés Á (2013) Deglaciation of the eastern Cumbria glaciokarst, northwest England, as determined by cosmogenic nuclide (10Be) surface exposure dating, and the pattern and significance of subsequent environmental changes. Cave Karst Sci 40(1):22–27

    Google Scholar 

  • Woodward JC, Hamlin RHB, Macklin MG, Hughes PD, Lewin J (2008) Glacial activity and catchment dynamics in northwest Greece: long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101(1):44–67

    Article  Google Scholar 

  • Yilmaz Y, Tüysüz O, Yigitbas E, Can Genç S, Sengör AMC (1998) Geology and tectonic evolution of the Pontides. Memoirs-American Association of Petroleum Geologists, pp 183–226

    Google Scholar 

  • Žák K, Hercman H, Orvošová M, Jačková I (2009) Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian. Int J Speleol 38(2):139–152

    Article  Google Scholar 

  • Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D (2012) Cryogenic cave carbonate—a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Clim Past Discuss 8(3):2145–2185

    Article  Google Scholar 

  • Zamora E, Santana A (1979) Características climáticas de la costa occidental de la Patagonia entre las latitudes 46° 40′ y 56° 30′S. Anales del Instituto Patagonia. Punta Arenas (Chile) 10:109–154

    Google Scholar 

  • Zasadni J, Kłapyta P (2014) The Tatra Mountains during the last glacial maximum. J Maps 10(3):440–456

    Article  Google Scholar 

  • Žebre M, Stepišnik U (2014) Reconstruction of Late Pleistocene glaciers on Mount Lovćen, Montenegro. Quatern Int 353:225–235

    Article  Google Scholar 

  • Žebre M, Stepišnik U (2015a) Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps

    Google Scholar 

  • Žebre M, Stepišnik U (2015b) Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surf Proc Land 40(11):1493–1505

    Article  Google Scholar 

  • Žebre M, Stepišnik U, Fabekovič G, Grlj A, Koblar S, Kodelja B, Pajk V, Štefanić K (2013) Pleistocenska poledenitev Biokova. Dela 39:141–155

    Article  Google Scholar 

  • Žebre M, Stepišnik U, Colucci RR, Forte E, Monegato G (2016) Evolution of a karst polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps). Geomorphology 257:143–154

    Article  Google Scholar 

  • Zreda M, Çiner A, Sarıkaya MA, Zweck C, Bayarı S (2011) Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geology 39(11):1051–1054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telbisz, T., Tóth, G., A. Ruban, D., M. Gutak, J. (2019). Notable Glaciokarsts of the World. In: Glaciokarsts. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-97292-3_9

Download citation

Publish with us

Policies and ethics