Skip to main content

Characteristics and Genesis of Subsurface Features in Glaciokarst Terrains

  • Chapter
  • First Online:
Glaciokarsts

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Glaciokarst terrains are rich not only in specific landforms, but in subsurface forms as well. Long, complex cave systems are widespread in glaciokarst terrains, and the deepest caves are almost all found in glaciokarsts. On the other hand, as for the volume of cave chambers and passage dimensions, glaciokarst caves are not among the largest ones. One of the most important questions about glaciokarst speleogenesis is whether subglacial cave development exists at all, and if so, how effective it is. Other important issues are the age of glaciokarst caves and the karst hydrology of glaciokarst terrains. Characteristic features of alpine caves are vadose shafts and (sub)horizontal passage levels. The two main variations of passage profiles are the tubular phreatic and the canyon-like vadose cross-sections, moreover, the combination of the previous two also exists, it is the so-called keyhole profile. Among small-scale cave features, paragenetic shapes and scallops are presented in this chapter. Characteristic glaciokarst cave sediments are coarse debris, which are mainly the results of extreme high discharges, fine-grained varved carbonates, which are deposited due to back-flooding conditions, and speleothems , which grow mostly during warm periods, but if some special conditions are satisfied, they may grow even below actually glacier-covered terrains due to the so-called “common-ion effect ”. Further on, cryogenic cave calcites are also formed in glaciokarst caves, but their amount is insignificant. As for the karst hydrology, extreme fluctuations are characteristic to glaciokarsts, meaning both high seasonal changes and relatively high daily changes according to melt cycles. Using U-series and cosmogenic nuclide methodology to date speleothems and detrital cave sediments, it is now evident that the majority of glaciokarst caves are polygenetic in origin, surviving one or more glacial periods. Preglacial caves (i.e. caves evolving since at least the Pliocene) are common in the Alps . On the other hand, there are approved postglacial caves as well, which are related to drumlins or isostatic fissures. Finally, subglacial speleogenesis is also proved to be possible, though it has a low rate. Ice-contact cave development takes place when a connected aquifer is formed in the glacier ice and in the neighbouring karstic rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson TC, Harmon RS, Smart PL, Waltham AC (1978) Palaoclimatic and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272:24–28

    Article  Google Scholar 

  • Atkinson TC, Lawson TJ, Smart PL, Harmon RS, Hess JW (1987) New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years. J Quat Sci 1:67–72

    Article  Google Scholar 

  • Atkinson TC (1983) Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta Canada. Arctic Alp Res 15(4):523–536

    Article  Google Scholar 

  • Audra P, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PY, Kunaver J, Monbaron M, Šušteršič F, Tognini P, Trimmel H, Wildberger A (2007) Cave and karst evolution in the Alps and their relation to paleoclimate and paleotopography. Acta Carsologica 36(1):53–68

    Article  Google Scholar 

  • Audra P, Quinif Y (1997) Une cavité de haute-montagne originale: la grotte Téophile (Alpe d’Huez, France) Rôle des paléoclimats pléistocènes dans la spéléogenèse. Spéléochronos 8:23–32

    Google Scholar 

  • Audra P (1994) Alpine karst speleogenesis: case studies from France (Vercors, Chartreuse, Ile de Crémieu) and Austria (Tennengebirge). Cave Karst Sci 21(3):75–80

    Google Scholar 

  • Audra P (2004) An overview of the current research carried out in the French Western Alps karsts. Acta Carsologica 33(1):25–44

    Google Scholar 

  • Audra P, Quinif Y, Rochette P (2002) The genesis of the Tennengebirge karst and caves (Salzburg, Austria). J Cave Karst Stud 64(3):153–164

    Google Scholar 

  • Audra P, Mocochain L, Camus H, Gilli É, Clauzon G, Bigot J (2004) The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France. Geodinamica Acta 17(6):27–38

    Google Scholar 

  • Bočić N, Faivre S, Kovačić M, Horvatinčić N (2012) Cave development under the influence of Pleistocene glaciation in the Dinarides—an example from Štirovača Ice Cave (Velebit Mt., Croatia). Zeitschrift für Geomorphologie 56(4):409–433

    Article  Google Scholar 

  • Bodenhamer HG (2007) Preglacial development of caves at structural duplexes on the Lewis Thrust, Glacier National Park, Montana. J Cave and Karst Stud 69(3):326–341

    Google Scholar 

  • Braun DD (1989) Glacial and periglacial erosion of the Appalachians. Geomorphology 2(1–3):233–256

    Article  Google Scholar 

  • Brook GA, Ford DC (1980) Hydrology of the Nahanni Karst, northern Canada, and the importance of extreme summer storms. J Hydrol 46(1–2):103–121

    Article  Google Scholar 

  • Burger PA (2004) Glacially-influenced sediment cycles in the Lime creek karst, Eagle County, Colorado. In Studies of cave sediments, Springer, pp 107–122

    Google Scholar 

  • Chevalier P (1944) Distinctions morphologiques entre deux types d’érosion souterraine. Revue de géographie alpine 32(3):475–486

    Article  Google Scholar 

  • Clark ID, Lauriol B (1992) Kinetic enrichment of stable isotopes in cryogenic calcites. Chem Geol Isot. Geosci Sect 102:217–228

    Google Scholar 

  • Cooper M (2014) Verification of post-glacial speleogenesis and the origins of epigene maze caves in New York. MSc dissertation, Mississippi State University

    Google Scholar 

  • Cooper MP, Mylroie JE (2015) Glaciation and Speleogenesis. Springer

    Google Scholar 

  • Corbel J (1957) Les karsts du Nord-Ouest de l’Europe et de quelques régions de comparaison: étude sur le rôle du climat dans l’érosion des calcaires. Revue de Géographie de Lyon 12

    Google Scholar 

  • Dreybrodt W (1982) A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide. Earth Planet Sci Lett 58(2):293–299

    Article  Google Scholar 

  • Ek C (1964) Note sur les eaux de fonte des glaciers de la Haute Maurienne (Savoie, France): leur action sur les carbonates. Revue belge de Géographie 88(1–2):127–156

    Google Scholar 

  • Farrant AR, Simms MJ (2011) Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales. Cave Karst Sci 38(1):31–52

    Google Scholar 

  • Farrant AR, Smart PL (2011) Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology 134(1):79–93

    Article  Google Scholar 

  • Farrant AR, Smith CJ, Noble SR, Simms MJ, Richards DA (2014) Speleogenetic evidence from Ogof Draenen for a pre-Devensian glaciation in the Brecon Beacons, South Wales UK. J Quat Sci 29(8):815–826

    Article  Google Scholar 

  • Faulkner T (2006) The impact of the deglaciation of central Scandinavia on karst caves and the implications for Craven’s limestone landscape. In: Re-thinking Craven’s limestone landscape, p 4

    Google Scholar 

  • Ford DC (1971) Alpine Karst in the Mt. Castleguard-Columbia icefield area, Canadian rocky mountains. Arctic Alp Res 15(4):239–252

    Article  Google Scholar 

  • Ford DC (1976a) Evidences of multiple glaciation in South Nahanni National Park, Mackenzie Mountains, Northwest Territories. Can J Earth Sci 13(10):1433–1445

    Article  Google Scholar 

  • Ford DC (1976b) Evidence of multiple glaciation in South Nahanni National Park, Mackenzie Mountains, Northwest Territories. Can J Earth Sci 13:1433–1445

    Article  Google Scholar 

  • Ford DC (1983a) Effects of glaciations upon karst aquifers in Canada. J Hydrol 61(1–3):149–158

    Article  Google Scholar 

  • Ford DC (1983b) The physiography and speleogenesis of castleguard cave, Columbia icefields, Alberta Canada. Arct Alp Res 15(4):437–450

    Article  Google Scholar 

  • Ford DC (1983c) Alpine karst systems at crowsnest pass, Alberta-British Columbia Canada. J Hydrol 61(1):187–192

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley and Sons Ltd, West Sussex, England

    Book  Google Scholar 

  • Ford DC, Schwarcz HP, Drake JJ, Gascoyne M, Harmon RS, Latham AG (1981) On the age of the extant relief in the southern Rocky Mountains of Canada. Arct Alp Res 13(1):1–10

    Article  Google Scholar 

  • Gascoyne M, Ford DC (1984) Uranium series dating of speleothems. II: results from the Yorkshire Dales and implications for cave development and quaternary climates. Cave Sci 11(2):65–85

    Google Scholar 

  • Gascoyne M, Currant AP, Lord TC (1981) Ipswichian fauna of Victoria Cave and the marine palaeoclimatic record. Nature 294(5842):652–654

    Google Scholar 

  • Gascoyne M, Latham AG, Harmon RS, Ford DC (1983) The antiquity of Castleguard Cave, Columbia Icefields, Alberta Canada. Arc Alp Res 15(4):463–470

    Article  Google Scholar 

  • Harmon RS, Ford DC, Schwarz HP (1977) Interglacial chronology of the Rocky and MacKenzie Mountains based upon 230Th/234U dating of calcite speleothems. Can J Earth Sci 14:2543–2552

    Article  Google Scholar 

  • Harmon RS, Thompson P, Schwarcz HP, Ford DC (1975) Uranium-series dating of speleothems. Nat Speleol Soc Bull 37:21–33

    Google Scholar 

  • Häuselmann P, Granger DE (2005) Dating of caves by cosmogenic nucleides: method, possibilities, and the Siebenhengste example (Switzerland). Acta Carsologica 34(1):43–50

    Google Scholar 

  • Häuselmann P, Lauritzen SE, Jeannin PY, Monbaron M (2008) Glacier advances during the last 400 ka as evidenced in St. Beatus Caves (BE, Switzerland). Quat Int 189(1):173–189

    Article  Google Scholar 

  • Häuselmann P (2007) How to date nothing with cosmogenic nuclides. Acta Carsologica 36(1):93–100

    Article  Google Scholar 

  • Holzkämper S, Spötl C, Mangini A (2005) High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth Planet Sci Lett 236(3):751–764

    Article  Google Scholar 

  • Horn G (1935) Űber die Bildung von Karsthöhlen unter einem Gletcher. Nor Geogr Tidsskr 5:494–498

    Article  Google Scholar 

  • Horn G (1937) Über einige Karsthöhlen in Norwegen. Mitteilungen für Höhlen und Karstforschung 1–15

    Google Scholar 

  • Horn G (1947) Karsthuler i Nordland. Norg Geol Unders 165:1–177

    Google Scholar 

  • Klimchouk A, Bayari S, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus Turkey. Acta Carsologica 35(2):111–121

    Google Scholar 

  • Klimchouk A, Nazik L, Bayari S, Tork K, Kasjan Y (2004) Kuzgun Cave and its Context: the first super-deep cave in the Aladaglar Massif, Turkey. www.researchgate.net

  • Lauritzen SE (1983) Arctic and alpine karst symposium. Program and field guide. Dept. of Chemistry, University of Oslo. 89 p

    Google Scholar 

  • Lauritzen SE (1984) Evidence of subglacial karstification in Glomdal, Svartisen, Norway. Nor Geogr Tidsskr 38:169–170

    Article  Google Scholar 

  • Lauritzen SE (1986) Kvithola at Fauske; Northern Norway: an example of ice- contact speleogenesis. Nor Geol Tidsskr 66:153–161

    Google Scholar 

  • Lauritzen SE, Gascoyne M (1980) The first radiometric dating of Norwegian stalagmites–Evidence of pre-Weichselian karst caves. Nor Geogr Tidsskr 34:77–82

    Article  Google Scholar 

  • Lauritzen SE (2006) Caves and speleogenesis at Blomstrandsøya, Kongsfjord W. Spitsbergen. Int J Speleol 35(1):37–58

    Article  Google Scholar 

  • Lauritzen SE, Mylroie JE (2000) Results of a speleothem U/Th dating reconnaissance from the Helderberg plateau New York. J Cave Karst Stud 62(1):20–26

    Google Scholar 

  • Lauritzen SE, Skoglund RØ (2013) Glacier ice-contact speleogenesis. Treatise Geomorphol 6:363–396

    Article  Google Scholar 

  • Luetscher M, Hoffmann DL, Frisia S, Spötl C (2011) Holocene glacier history from alpine speleothems, Milchbach cave Switzerland. Earth Planet Sci Lett 302(1):95–106

    Article  Google Scholar 

  • Maire R (1978) Les karsts sous-glaciaires et leurs relations avec le karst profond. Revue de géographie alpine 66(2):139–148

    Article  Google Scholar 

  • Maire R (1990) La haute montagne calcaire: karsts, cavités, remplissages, paléoclimats, Quaternaire. Karstologia-Mémoires 3:1–731

    Google Scholar 

  • Mangerud J, Gyllencreutz R, Lohne Ö, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations-extent and chronology: a closer look. Elsevier

    Google Scholar 

  • Murphy PJ, Faulkner TL, Lord TC, Thorp JA (2015) The caves of Giggleswick Scar-examples of deglacial speleogenesis? Cave Karst Science 42(1):42–53

    Google Scholar 

  • Murphy P, Westerman AR, Clark R, Booth A, Parr A (2008) Enhancing understanding of breakdown and collapse in the Yorkshire Dales using ground penetrating radar on cave sediments. Eng Geol 99(3):160–168

    Article  Google Scholar 

  • Oxaal L (1914) Kalkstenshuler i Ranen. Norg Geol Unders 69:1–47

    Google Scholar 

  • Palmer AN (2003) Speleogenesis in carbonate rocks. Speleogenesis Evol Karst Aquifers 1(1):2–11

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria. Zeitschrift Für Geomorphologie Supplementband 147:29–54

    Google Scholar 

  • Plan L, Filipponi M, Behm M, Seebacher R, Jeutter P (2009) Constraints on alpine speleogenesis from cave morphology—a case study from the eastern Totes Gebirge (Northern Calcareous Alps, Austria). Geomorphology 106(1):118–129

    Article  Google Scholar 

  • Salvigsen O, Elgersma A (1985) Large-scale karst features and open taliks at Vardeborgsletta, outer Isfjorden. Svalbard, Polar Res 3(2):145–153

    Article  Google Scholar 

  • Skoglund RØ, Lauritzen SE (2010) Morphology and speleogenesis of Okshola (Fauske, northern Norway): example of a multi-stage network cave in a glacial landscape. Norw J Geol 90:123–137

    Google Scholar 

  • Skoglund RØ, Lauritzen SE, Gabrovšek F (2010) The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: a modelling approach. J Hydrol 388(1):157–172

    Article  Google Scholar 

  • Skoglund RØ, Lauritzen SE (2011) Subglacial maze origin in low-dip marble stripe karst: examples from Norway. J Cave Karst Stud 73(1):31–43

    Article  Google Scholar 

  • Skoglund RØ, Lauritzen SE (2013) Characterisation of a post-glacial invasion aquifer: the Grønli-Seter karst system, northern Norway. Norwegian J Geol 93(1):61–73

    Google Scholar 

  • Smart CC (2004) Glacierized and glaciated karst. Gunn J (edt) Encyclopedia of caves and karst science New York. Fitzroy Dearborn, NY, pp 804–809

    Google Scholar 

  • Smart CC (1983) The hydrology of the castleguard karst, columbia icefields, Alberta Canada. Arctic Alp Res 15(4):471–486

    Article  Google Scholar 

  • Spötl C, Mangini A (2007a) Speleothems and paleoglaciers. Earth Planet Sci Lett 254(3):323–331

    Article  Google Scholar 

  • Spötl C, Mangini A (2007b) Speleothems and paleoglaciers. Earth Planet Sci Lett 254(3):323–331

    Article  Google Scholar 

  • Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002a) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818

    Article  Google Scholar 

  • Spötl C, Unterwurzacher M, Mangini A, Longstaffe FJ (2002b) Carbonate speleothems in the dry, inneralpine Vinschgau valley, northernmost Italy: witnesses of changes in climate and hydrology since the last glacial maximum. J Sediment Res 72(6):793–808

    Article  Google Scholar 

  • Szabó L (2008) Barlangfejlődés a Canin-fennsík mélyén. Karsztfejlődés 13:247–267

    Google Scholar 

  • Szabó L (2009) Cave area of the Canin-Plateau—a naturally geodiverse land in the middle of Europe. Acta Climatologica et Chorologica 42–43:143–150

    Google Scholar 

  • Waltham AC, Simms MJ, Farrant AR, Goldie HS (1997) Karst and caves of Great Britain. Geol Conserv Rev 12, 358 p

    Google Scholar 

  • Werenskiold W (1953) The extent of frozen ground under the sea bottom and glacier beds. J Glaciol 2:197–200

    Article  Google Scholar 

  • White WB (1979) Karst landforms in the Wasatch and Uinta Mountains, Utah. NSS Bulletin 41:80–88

    Google Scholar 

  • Žák K, Hercman H, Orvošová M, Jačková I (2009) Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian. Int J Speleol 38(2):139–152

    Article  Google Scholar 

  • Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D (2012) Cryogenic cave carbonate–a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Clim Past Discuss 8(3):2145–2185

    Article  Google Scholar 

  • Žák K, Urban J, Cı́lek V, Hercman H (2004) Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model. Chem Geol 206(1):119–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telbisz, T. (2019). Characteristics and Genesis of Subsurface Features in Glaciokarst Terrains. In: Glaciokarsts. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-97292-3_5

Download citation

Publish with us

Policies and ethics