Skip to main content

Comparison of Methods for Computing a Target Point for Aspirations and Biopsies

  • Conference paper
  • First Online:
Biomechanics in Medicine and Biology (BIOMECHANICS 2018)

Abstract

The aim of this study was to compare three methods for computing a target point for use in autonomous or semi-autonomous aspirations and biopsies. Given a 3D binary image of the object of interest, the procedures computed the target point. The following approaches were tested: the method #1 - center of mass, the method #2 - largest projection area + largest empty circle and the method #3 - largest empty circle + largest empty circle. Each procedure was tested on four cases obtained from Magnetic Resonance Imaging scans used to diagnose Baker’s cysts. The methods were analyzed and compared in terms of their safety and computation time. In terms of safety, the best results were obtained with the third procedure, which used the largest empty circle + largest empty circle combination. The second method - the largest projection area + largest empty circle - offered good compromise between safety and computation time. It can be used to estimate target points for medical tool path planning in aspiration or biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheil-Adlung, X., Behrendt, T., Wong, L.: Health sector employment: a tracer indicator for universal health coverage in national Social Protection Floors. Hum. Resour. Health 13, 1–8 (2015). https://doi.org/10.1186/s12960-015-0056-9

    Article  Google Scholar 

  2. Ciszkiewicz, A., Milewski, G.: A novel kinematic model for a functional spinal unit and a lumbar spine. Acta Bioeng. Biomech. 18 (2016). https://doi.org/10.5277/abb-00324-2015-03

  3. Sancisi, N., Parenti-Castelli, V.: A 1-Dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45, 658–665 (2010). https://doi.org/10.1016/j.mechmachtheory.2009.11.009

    Article  MATH  Google Scholar 

  4. Pappalardo, O.A., Sturla, F., Onorati, F., Puppini, G., Selmi, M., Luciani, G.B., Faggian, G., Redaelli, A., Votta, E.: Mass-spring models for the simulation of mitral valve function: looking for a trade-off between reliability and time-efficiency. Med. Eng. Phys. 47, 93–104 (2017). https://doi.org/10.1016/j.medengphy.2017.07.001

    Article  Google Scholar 

  5. Basafa, E., Farahmand, F.: Real-time simulation of the nonlinear visco-elastic deformations of soft tissues. Int. J. Comput. Assist. Radiol. Surg. 6, 297–307 (2011). https://doi.org/10.1007/s11548-010-0508-6

    Article  Google Scholar 

  6. Cicek, Y., Duysak, A.: The modelling of interactions between organs and medical tools: a volumetric mass-spring chain algorithm. Comput. Methods Biomech. Biomed. Eng. 17, 488–496 (2014). https://doi.org/10.1080/10255842.2012.694875

    Article  Google Scholar 

  7. Assi, K.C., Grenier, S., Parent, S., Labelle, H., Cheriet, F.: A physically based trunk soft tissue modeling for scoliosis surgery planning systems. Comput. Med. Imag. Graph. 40, 217–228 (2015). https://doi.org/10.1016/j.compmedimag.2014.11.002

    Article  Google Scholar 

  8. Mohammadi, A., Ahmadian, A., Rabbani, S., Fattahi, E., Shirani, S.: A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study. Int. J. Med. Robot. Comput. Assist. Surg. 13, e1792 (2017). https://doi.org/10.1002/rcs.1792

    Article  Google Scholar 

  9. Villard, P.-F., Hammer, P.E., Perrin, D.P., del Nido, P.J., Howe, R.D.: Fast image-based mitral valve simulation from individualized geometry. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1880 (2018). https://doi.org/10.1002/rcs.1880

    Article  Google Scholar 

  10. Ciszkiewicz, A., Milewski, G.: Path planning for minimally-invasive knee surgery using a hybrid optimization procedure. Comput. Methods Biomech. Biomed. Eng. 21, 47–54 (2018). https://doi.org/10.1080/10255842.2017.1423289

    Article  Google Scholar 

  11. Olszewski, R., Villamil, M.B., Trevisan, D.G., Nedel, L.P., Freitas, C.M.D.S., Reychler, H., Macq, B.: Towards an integrated system for planning and assisting maxillofacial orthognathic surgery. Comput. Methods Programs Biomed. 91, 13–21 (2008). https://doi.org/10.1016/j.cmpb.2008.02.007

    Article  Google Scholar 

  12. Luboz, V., Ambard, D., Swider, P., Boutault, F., Payan, Y.: Computer assisted planning and orbital surgery: patient-related prediction of osteotomy size in proptosis reduction. Clin. Biomech. 20, 900–905 (2005). https://doi.org/10.1016/j.clinbiomech.2005.05.017

    Article  Google Scholar 

  13. Adolphs, N., Haberl, E.-J., Liu, W., Keeve, E., Menneking, H., Hoffmeister, B.: Virtual planning for craniomaxillofacial surgery–7 years of experience. J. Craniomaxillofac. Surg. 42, e289–e295 (2014). https://doi.org/10.1016/j.jcms.2013.10.008

    Article  Google Scholar 

  14. Napalkova, L., Rozenblit, J.W., Hwang, G., Hamilton, A.J., Suantak, L.: An optimal motion planning method for computer-assisted surgical training. Appl. Soft Comput. 24, 889–899 (2014). https://doi.org/10.1016/j.asoc.2014.08.054

    Article  Google Scholar 

  15. Vrooijink, G.J., Abayazid, M., Patil, S., Alterovitz, R., Misra, S.: Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int. J. Rob. Res. 33, 1361–1374 (2014). https://doi.org/10.1177/0278364914526627

    Article  Google Scholar 

  16. Hassouna, M.S., Farag, A.A., Hushek, S.G.: 3D path planning for virtual endoscopy. Int. Congr. Ser. 1281, 115–120 (2005). https://doi.org/10.1016/j.ics.2005.03.142

    Article  Google Scholar 

  17. Zarychta, P., Badura, P., Pietka, E.: Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis. Bull. Polish Acad. Sci. Tech. Sci. 65, 63–70 (2017). https://doi.org/10.1515/bpasts-2017-0008

    Article  Google Scholar 

  18. Szwarc, P., Kawa, J., Rudzki, M., Pietka, E.: Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis. Comput. Med. Imag. Graph. 46, 178–190 (2015). https://doi.org/10.1016/j.compmedimag.2015.06.002

    Article  Google Scholar 

  19. Shan, L., Zach, C., Charles, C., Niethammer, M.: Automatic atlas-based three-label cartilage segmentation from MR knee images. Med. Image Anal. 18, 1233–1246 (2014). https://doi.org/10.1016/j.media.2014.05.008

    Article  Google Scholar 

  20. Araújo, T., Abayazid, M., Rutten, M.J.C.M., Misra, S.: Segmentation and three-dimensional reconstruction of lesions using the automated breast volume scanner (ABVS). Int. J. Med. Robot. Comput. Assist. Surg. (2016). https://doi.org/10.1002/rcs.1767

    Article  Google Scholar 

  21. Abdolali, F., Zoroofi, R.A., Otake, Y., Sato, Y.: Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput. Biol. Med. 72, 108–119 (2016). https://doi.org/10.1016/j.compbiomed.2016.03.014

    Article  Google Scholar 

  22. Markiewicz, T., Dziekiewicz, M., Osowski, S., Maruszynski, M., Kozlowski, W., Boguslawska-Walecka, R.: Thresholding techniques for segmentation of atherosclerotic plaque and lumen areas in vascular arteries. Bull. Polish Acad. Sci. Tech. Sci. 63, 269–280 (2015). https://doi.org/10.1515/bpasts-2015-0031

    Article  Google Scholar 

  23. Ciszkiewicz, A., Lorkowski, J., Milewski, G.: A novel planning solution for semi-autonomous aspiration of Baker’s cysts. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1882 (2018). https://doi.org/10.1002/rcs.1882

    Article  Google Scholar 

  24. Mason, D.: SU-E-T-33: Pydicom: An Open Source DICOM Library. Med. Phys. 38, 3493 (2011). https://doi.org/10.1118/1.3611983

    Article  Google Scholar 

  25. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  26. Toussaint, G.T.: Computing largest empty circles with location constraints. Int. J. Comput. Inf. Sci. 12, 347–358 (1983). https://doi.org/10.1007/BF01008046

    Article  MathSciNet  MATH  Google Scholar 

  27. Moustris, G.P., Hiridis, S.C., Deliparaschos, K.M., Konstantinidis, K.M.: Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 7, 375–392 (2011). https://doi.org/10.1002/rcs.408

    Article  Google Scholar 

  28. Herghelegiu, P.-C., Manta, V., Perin, R., Bruckner, S., Gröller, E.: Biopsy planner–visual analysis for needle pathway planning in deep seated brain tumor biopsy. In: Computer Graphics Forum, pp. 1085–1094. Wiley Online Library (2012)

    Google Scholar 

  29. Liang, K., Rogers, A.J., Light, E.D., von Allmen, D., Smith, S.W.: 3D ultrasound guidance of autonomous robotic breast biopsy: feasibility study. Ultrasound Med. Biol. 36, 173–177 (2010). https://doi.org/10.1016/j.ultrasmedbio.2009.08.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ciszkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciszkiewicz, A., Milewski, G. (2019). Comparison of Methods for Computing a Target Point for Aspirations and Biopsies. In: Arkusz, K., Będziński, R., Klekiel, T., Piszczatowski, S. (eds) Biomechanics in Medicine and Biology. BIOMECHANICS 2018. Advances in Intelligent Systems and Computing, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-97286-2_8

Download citation

Publish with us

Policies and ethics