Skip to main content

Genomics of Disease Resistance in Castor Bean

  • Chapter
  • First Online:
The Castor Bean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Castor bean is considered an economically important plant species within the Euphorbiaceae family from a number of industrial perspectives. Large-scale cultivation has increased the incidence of various biotic stresses. Diseases such as leaf spot, leaf blight, seedling blight, powdery mildew, and virus infections have been reported in the major growing regions, which has caused significant global yield losses. Genomic and transcriptomic analyses of the castor bean genome have led to the identification of nearly 170 predicted disease resistance genes, including members of the NBS-LRR family, along with over 300 defense-response-associated transcription factors. Furthermore, genetic markers linked to disease resistance genes have also been cataloged and comparative genomics has uncovered common molecular descriptors associated with disease resistance in castor bean and other important members of the Euphorbiaceae family. Resistance genes that are common in Euphorbiaceae can be leveraged for engineering biotic stress tolerance in castor bean. It is anticipated that emerging engineering techniques such as CRISPR/Cas9-based genome editing will enable the enhancement of disease resistance in castor bean. Modern biotechnological approaches and advanced genomic and other “omic” technologies will pave the way to counter disease prevalence and to develop resistance strategies to achieve castor bean’s full-yield potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjani K (2010) Pattern of genetic diversity among Fusarium wilt resistant castor germplasm accessions (Ricinus communis L.). Elect J Plant Breed 1(2):182–187

    Google Scholar 

  • Arafa RA, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K (2018) Characterization of Egyptian Phytophthora infestans population using simple sequence repeat markers. J Gen Plant Pathol 84:104–107

    Article  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    Article  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kolian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  Google Scholar 

  • Chauhan RS, Sood A (2013) Comparative genomics in Euphorbiaceae. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha: challenges for a new energy crop, vol 2. Springer, New York, pp 351–374

    Chapter  Google Scholar 

  • Chen TZ, Lv YD, Zhao TM, Li N, Yang Y, Yu W et al (2013) Comparative transcriptome profiling of a resistant vs susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8:e80816

    Article  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 14;411(6839):826–833

    Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  CAS  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249

    Article  CAS  Google Scholar 

  • Dhingani RM, Tomar RS, Parakhia MV, Patel SV, Golakiya BA (2012) Analysis of genetic diversity among different Ricinus communis genotypes for macrophomina root rot through RAPD and microsatellite markers. Int J Plant Prot 5:1–7

    Google Scholar 

  • Dracatos PM, Cogan NOI, Sawbridge TI, Gendall AR, Smith KF, Spangenberg GC, Forster JW (2009) Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biol 9:62

    Article  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger L (1988) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11:713–715

    Article  CAS  Google Scholar 

  • Gao L, Cao Y, Xia Z, Jiang G, Liu G, Zhang W, Zhai W (2013) Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants?—a comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genom 14:738

    Article  CAS  Google Scholar 

  • Gedil M, Kumar M, Igwe D (2012) Isolation and characterization of resistant gene analogs in cassava, wild Manihot species, and castor bean (Ricinus communis). Afr J Biotechnol 11:15111–15123

    CAS  Google Scholar 

  • Joosten M, de Wit P (1999) The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant–pathogen interactions. Annu Rev Phytopathol 37:335–367

    Article  CAS  Google Scholar 

  • Joyeux A, Fortin MG, Mayerhofer R, Good AG (1999) Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome 42:735–743

    Article  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato ve disease-resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98:6511–6515

    Article  CAS  Google Scholar 

  • Kayondo SI, Carpio DPD, Lozano R, Ozimati A, Wolfe MD, Baguma Y, Gracen V, Samuel O, Ferguson M, Kawuki R, Jannink JL (2018) Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Sci Rep 8:1549

    Article  Google Scholar 

  • Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, Shu-Chien AC, Matsui M (2016) The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci Rep 6:28594

    Article  CAS  Google Scholar 

  • Lozano R, Hamblin MT, Prochnik S, Jannink JL (2015) Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genom 16:1–14

    Article  CAS  Google Scholar 

  • Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389

    Article  CAS  Google Scholar 

  • Marone D, Russo MA, Laidò G, Leonardis AMD, Mastrangelo AM (2013) Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  Google Scholar 

  • Mirhosseini HA, Nasrollah-Nejad S (2017) First report of cucumber mosaic virus infecting Ricinus communis in India. Plant Dis 101(12):2154

    Article  Google Scholar 

  • Mirzaee MR, Khodaparast MA, Mohseni M, Ramazani SHR, Soltani-Najafabadi M (2011) First record of powdery mildew of castor-oil plant (Ricinus communis) caused by the anamorphic stage of Leveillula taurica in Iran. Austral Plant Dis Notes 6:36–38

    Article  Google Scholar 

  • Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Hiroshi E, Nanasato Y, Tabei Y, Takano Y, Shirasu K, Narusaka Y (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS ONE 8(2):e55954

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  CAS  Google Scholar 

  • Parrella G, De Stradis A, Vovlas C (2008) First report of olive latent virus 2 in wild castor bean (Ricinus communis L.) in Italy. Plant Pathol 57:392

    Article  Google Scholar 

  • Raj SK, Snehi SK, Gautam KK, Khan MS (2010) First report of association of cucumber mosaic virus with blister and leaf distortion of castor bean (Ricinus communis L.) in India. Phytoparasitica 38:283–289

    Article  Google Scholar 

  • Reddy BBV, Prasanthi L, Sivaprasad Y, Sujitha A, Krishna TG (2014) First report of tobacco streak virus in castor bean. J Plant Pathol 96:431–439

    Google Scholar 

  • Reddy RN, Sujatha M, Reddy AV, Reddy AP (2011) Inheritance and molecular mapping of wilt resistance gene (s) in castor (Ricinus communis L.). Intl J Plant Breed 5:84–87

    Google Scholar 

  • Sabet KA (1959) Bacterial leaf blight disease of castor. Ann Appl Biol 47:49–55

    Article  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  Google Scholar 

  • Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is upregulated in a non-virus-specific manner. Proc Natl Acad Sci USA 103:11856–11861

    Article  CAS  Google Scholar 

  • Sharma A (2011) Development of genome resources and their utilization in Jatropha through comparative genomics with castor bean. Ph.D. thesis, Jaypee University of Information Technology, Waknaghat

    Google Scholar 

  • Simões KS, Silva SA, Machado EL, Brasileiro HS (2017) Development of TRAP primers for Ricinus communis L. Genet Mol Res 16:1–13

    Google Scholar 

  • Singh M, Chaudhuri I, Mandal SK, Chaudhuri RK (2011) Development of RAPD markers linked to fusarium wilt resistance gene in castor bean (Ricinus communis L.). Genet Eng Biotech J 28:1–9

    Google Scholar 

  • Soares DJ (2012) Gray mold of castor: a review. In: Cumagun CJR (ed) Plant Pathology. InTech, Rijeka, pp 219–240

    Google Scholar 

  • Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom 14:573

    Article  CAS  Google Scholar 

  • Sood A, Chauhan RS (2017) Comparative NGS transcriptomics unravels molecular components associated with mosaic virus infection in a bioenergy plant species, Jatropha curcas L. Bioenergy Res 10:129–145

    Article  CAS  Google Scholar 

  • Sood A, Jaiswal V, Chanumolu SK, Malhotra N, Pal T, Chauhan RS (2014) Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 41(11):7683–7695

    Article  CAS  Google Scholar 

  • Souza AGC, Maffia LA (2011) First report of Cercospora coffeicola causing cercospora leaf spot of castor beans in Brazil. Plant Dis 95(11):1479

    Article  CAS  Google Scholar 

  • Tarr DE, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197

    Article  Google Scholar 

  • Uchida JY, Aragaki M (1988) Seedling blight of castor bean in Hawaii caused by Phytophthora palmivora. Plant Dis 72:1994

    Article  Google Scholar 

  • Vahunia B, Singh P, Patel NY, Rathava A (2017) Management of fusarium wilt of castor (Ricinus communis L.) caused by Fusarium oxysporum f. sp. ricini with antagonist, botanical extract and pot experiment. Intl J Curr Microbiol App Sci 6(9):390–395

    Article  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226–227

    Article  Google Scholar 

  • van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72

    Article  Google Scholar 

  • Voitsik AM, Muench S, Deising HB, Voll LM (2013) Two recently duplicated maize NAC transcription factor paralogs are induced in response to colletotrichum graminicola infection. BMC Plant Biol 13:85

    Article  CAS  Google Scholar 

  • Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang SP, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–779

    Article  CAS  Google Scholar 

  • Wang HZ, Zhao PJ, Xu JC et al (2003) Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene. Acta Genet Sin 30:70–75

    CAS  PubMed  Google Scholar 

  • Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, Lozano R, Carpio DPD, Ramu P, Jannink JL (2016) Genomewide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9:1–13

    Article  Google Scholar 

  • Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X, Huang Y, Song C, Wang Z, Shi N, Zhang X, Fang X, Yang Q, Jiang H, Chen Y, Li M, Chen F, Wang J, Wu G (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81(5):810–821

    Article  CAS  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  CAS  Google Scholar 

  • Xu W, Li F, Ling L, Liu A (2013) Genomewide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genom 14:785

    Article  CAS  Google Scholar 

  • Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W (2016) Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol J 15(1):39–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, A., Chauhan, R.S. (2018). Genomics of Disease Resistance in Castor Bean. In: Kole, C., Rabinowicz, P. (eds) The Castor Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97280-0_6

Download citation

Publish with us

Policies and ethics