Skip to main content

Ricin and RCA—The Enemies Within Castor (Ricinus communis L.): A Perspective on Their Biogenesis, Mechanism of Action, Detection Methods and Detoxification Strategies

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The main impediment in utilizing the de-oiled meal of castor bean (Ricinus communis L.) as animal feed is the presence of two toxic proteins, ricin (also known as RCA II and RCA60) and RCA (R. communis agglutinin, otherwise known as RCA I and RCA120) found in the endosperm of mature seeds. Their presence compromises with the high protein content (around 25% with balanced amino acid composition) in the leftover oilcake which otherwise could find use as an excellent animal feed. This review is an attempt at providing insights into the biology and biogenesis of ricin and RCA and various approaches for reducing or eliminating ricin and RCA in this oil crop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114:325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen RS, Millgate AG, Chitty A, Thisleton Miller AC, Fist A, Gerlach WL, Larkin P (2004) RNAi-mediated replacement of morphine with the non narcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Akande TO, Odunsi AA, Akinfala EO (2016) A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J Anim Physiol Anim Nutr 100:201–210

    Article  CAS  Google Scholar 

  • Anandan S, Anil Kumar GK, Ghosh J, Ramachandra KS (2005) Effect of different physical and chemical treatments on detoxification of ricin in castor cake. Anim Feed Sci Technol 120:159–168

    Article  CAS  Google Scholar 

  • Argent RH, Roberts LM, Wales R, Robertus JD, Lord JM (1994) Introduction of a disulfide bond into ricin A chain decreases the cytotoxicity of the ricin holotoxin. J Biol Chem 269:26705–26710

    CAS  PubMed  Google Scholar 

  • Auld DL, Rolfe RD, McKeon TA (2001) Development of castor with reduced toxicity. J New Seeds 3:61–69

    Article  Google Scholar 

  • Barnes DJ, Baldwin BS, Braasch DA (2009) Ricin accumulation and degradation during castor seed development and late germination. Ind Crops Prod https://doi.org/10.1016/j.indcrop.2009.04.003

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Bozza WP, Tolleson WH, Rosado LA, Zhang B (2015) Ricin detection: tracking active toxin. Biotechnol Adv 33(1):117–123. https://doi.org/10.1016/j.biotechadv.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Jolliffe NA, Frigerio L, Roberts LM (2003) Sequence-specific, golgi-dependent targeting of the castor bean 2S albumin to the vacuole in tobacco protoplasts. Plant J 36:711–719

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N (2003) Inverted repeat of a heterologous 3-untranslated region for high-efficiency, high throughput gene silencing. Plant J 33:793–800

    Article  CAS  PubMed  Google Scholar 

  • Butterworth AG, Lord JM (1983) Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. Eur J Biochem 137:57–65

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelli S, Vitale A (2005) The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. J Exp Bot 56:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Cawley DB, Houston LL (1979) Effect of sulfhydryl reagents and protease inhibitors on sodium dodecyl sulfate-heat induced dissociation of Ricinus communis agglutinin. Biochim Biophys Acta 581:51–62

    Article  CAS  PubMed  Google Scholar 

  • Cawley DB, Hedblom ML, Hoffman EJ, Houston LL (1977) Differential ricin sensitivity of rat liver and wheat germ ribosomes in polyuridylic acid translation. Arch Biochem Biophys 182:690–695

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM (2008) Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 283:33276–33286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan AP, Crabtree T, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EG, Gedil M, Stanke M, Haas J, Wortman JR, Fraser-Liggett CM, Ravel J, Rabiowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol. Online 22 Aug 2010. https://doi.org/10.1038/nbt.1674

  • Chen GQ, He X, McKeon TA (2005) A simple and sensitive assay for distinguishing the expression of ricin and Ricinus communis agglutinin genes in developing castor seed (Ricinus communis L.). J Agri Food Chem 53:2358–2361

    Article  CAS  Google Scholar 

  • Craddock C, Hunter P, Szakacs E, Hinz G, Robinson D, Frigerio L (2008) Lack of a vacuolar sorting receptor leads to non-specific missorting of soluble vacuolar proteins in Arabidopsis seeds. Traffic 9:408–416

    Article  CAS  PubMed  Google Scholar 

  • Daniel J, Fetter L, Jett S, Rowland TJ, Bonham AJ (2017) Electrochemical aptamer scaffold biosensors for detection of botulism and ricin proteins. Meth Mol Biol 1600:9–23. https://doi.org/10.1007/978-1-4939-6958-6_2

    Article  CAS  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Roberts LM, Ceriotti A (2005) Endoplasmic reticulum associated degradation of ricin A chain has unique and plant-specific features. Plant Physiol 137:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duracova M, Klimentova J, Fucikova A, Dresler J (2018) Proteomic methods of detection and quantification of protein toxins. Toxins (Basel) 10(3):99. https://doi.org/10.3390/toxins10030099

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxin lectin ricin in eukaryotic ribosomes. J Biol Chem 262:8128–8130

    CAS  PubMed  Google Scholar 

  • Fan JR, Zhu J, Wu WG, Huang Y (2017, January) Plasmonic metasurfaces based on nanopin-cavity resonator for quantitative colorimetric ricin sensing. Small 13(1). https://doi.org/10.1002/smll.201601710

  • Ferrini JB, Martin M, Taupiac MP, Beaumelle B (1995) Expression of functional ricin B chain using the baculovirus system. Plant Physiol 233:772–777

    CAS  Google Scholar 

  • Frigerio L, Roberts LM (1998) The enemy within: ricin and plant cells. J Exp Bot 49:1473–1480

    Article  CAS  Google Scholar 

  • Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998a) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigerio L, Hin G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9:1564–1570

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, Jolliffe NA, Di Cola A, Felipe HD, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM (2001) The internal propeptide of the ricin precursor carries a sequence specific determinant for vacuolar sorting. Plant Physiol 126:167–175

    Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriottim A, Roberts LM (1998b) Free ricin A chain, proricin and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for wheat functional gene analysis. Transgen Res 16:689–701

    Article  CAS  Google Scholar 

  • Gandhi VM, Cherian KM, Mulky MJ (1994) Detoxification of castor seed meal by interaction with sal seed meal. J Amer Oil Chem Soc 71:827–831

    Article  CAS  Google Scholar 

  • Gilissen L, Bolhaar STH, Matos CR, Rouwendal GA, Boone M, Krens EA, Zuidmeer L, van Leeuwen A, Akkerdaas Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg WE, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    Article  CAS  PubMed  Google Scholar 

  • Godoy MG, Gutarra MLE, Maciel FM, Felix SP, Bevilaqua JV, Machado OLT, Freire DMG (2009) Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme Microb Technol 44:317–322

    Article  CAS  Google Scholar 

  • Gray J, Picton S, Shabeer J, Schuch W, Grierson D (1992) Molecular biology of fruitripening and its manipulation with antisense genes. Plant Mol Biol 9:69–87

    Article  Google Scholar 

  • Halling KC, Halling AC, Murray EE, Ladin BF, Houston LL, Weaver RF (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl Acid Res 13:8019–8033

    Article  CAS  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M (1995) Vacuolar processing enzyme responsible for the maturation of seed proteins. J Plant Physiol 145:632–640

    Article  CAS  Google Scholar 

  • Hara-Nishimura I, Takeuchi Y, Nishimura M (1993) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5:1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci USA 79:5935–5938

    Article  CAS  PubMed  Google Scholar 

  • Harley SM, Lord JM (1985) In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Sc 41:111–116

    Article  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara- Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  Google Scholar 

  • Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon golgi apparatus. J Cell Biol 152:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1997) An aspartic endopeptidase is involved in the breakdown of storage proteins in protein-storage vacuoles of plants. Eur J Biochem 246:133–141

    Article  CAS  PubMed  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol 145:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe NA, Brown JC, Neumann U, Vicre M, Bachi A, Hawes C, Ceriotti A, Roberts LM, Frigerio L (2004) Transport of ricin and 2S albumin precursors to the storage vacuoles of Ricinus communis endosperm involves the golgi and VSR-like receptors. Plant J 39:821–833

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe NA, Ceriotti A, Frigerio L, Roberts LM (2003) The position of the proricin vacuolar targeting signal is functionally important. Plant Mol Biol 51:631–641

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe NA, Di Cola A, Marsden CJ, Lord JM, Ceriotti A, Frigerio L, Roberts LM (2006) The N-terminal ricin propeptide influences the fate of ricin A-chain in tobacco protoplasts. J Biol Chem 281:23377–23385

    Article  CAS  PubMed  Google Scholar 

  • Kalb SR, Schieltz DM, Becher F, Astot C, Fredriksson SA, Barr JR (2015) Recommended mass spectrometry-based strategies to identify ricin-containing samples. Toxins (Basel) 7:4881–4894. https://doi.org/10.3390/toxins7124854

    Article  CAS  Google Scholar 

  • Katzin BJ, Collins EJ, Robertus JD (1991) The structure of ricin A chain at 2.5 Å. Proteins Struct Funct Genet 10:251–259

    Article  CAS  PubMed  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91:3403–3407

    Article  CAS  PubMed  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb FI, Roberts LM, Lord JM (1985) Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem 148:265–270

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Xiao X, Tao J, Wang DM, Huang CZ, Zhen SJ (2017) A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens Bioelec 15(91):149–154. https://doi.org/10.1016/j.bios.2016.12.010

    Article  CAS  Google Scholar 

  • Lord JM (1985a) Precursors of ricin and Ricinus communis agglutinin glycosylation and processing during synthesis and intracellular transport. Eur J Biochem 146:411–416

    Article  CAS  PubMed  Google Scholar 

  • Lord JM (1985b) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. Eur J Biochem 146:403–409

    Article  CAS  PubMed  Google Scholar 

  • Lord JM, Spooner RA (2011) Ricin trafficking in plant and mammalian cells. Toxin 3:787–801

    Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action and some current applications. FASEB J 8:201–208

    Article  CAS  PubMed  Google Scholar 

  • Loss-Morais G, Turchetto-Zolet AC, Etges M, Cagliari A, Körbes AP, Maraschin MS, Margis-Pinheiro M, Margis R (2013) Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development. Genet Mol Biol 36:74–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RS, Frigerio L, Roberts LM (2010) Disulfide formation in plant storage vacuoles permits assembly of a multimeric lectin. Biochem J 427:513–521

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K, Nakamura K (1999) Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41:825–835

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K, Neuhaus JM (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    Article  CAS  Google Scholar 

  • Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • McKeon TA, Chen GQ (2001) High-tech castor plants may open door to domestic production. ARS Magaz 49:12–13

    Google Scholar 

  • Miao Y, Li KY, Li HY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839

    Article  CAS  PubMed  Google Scholar 

  • Montfort W, Villafranca JE, Monzingo AF, Ernst S, Katzin B, Rutenber E, Xuong NH, Hamlin R, Robertus JD (1987) The three-dimensional structure of ricin at 2.8 A. J Biol Chem 262:5398–5403

    CAS  PubMed  Google Scholar 

  • Nicolson GL, Blaustein J, Etzler ME (1974) Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 13:196–204

    Article  CAS  PubMed  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Paris N, Neuhausm JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50:903–914

    Article  CAS  PubMed  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  CAS  PubMed  Google Scholar 

  • Pinkerton SD, Rolfe RD, Auld DL, Ghetie V, Lauterbach BF (1999) Selection of castor with divergent concentrations of ricin and Ricinus communis agglutinin. Crop Sci 39:353–357

    CAS  Google Scholar 

  • Richardson PT, Westley M, Roberts LM, Gould JH, Colman A, Lord JM (1989) Recombinant proricin binds galactose but does not depurinate 28S ribosomal RNA. FEBS Lett 255:15–20

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Lord JM (1981) Protein biosynthetic capacity in the endosperm tissue of ripening castor bean seeds. Planta 152:420–427

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Lamb FI, Pappin DJC, Lord JM (1985) The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J Biol Chem 260:15682–15688

    CAS  PubMed  Google Scholar 

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6:615–625

    Article  CAS  PubMed  Google Scholar 

  • Rutenber E, Robertus JD (1991) The structure of ricin B-Chain at 2.5 Å resolution. Proteins 10:260–269

    Article  CAS  PubMed  Google Scholar 

  • Rutenber E, Katzin BJ, Collins EJ, Mlsna D, Ernst SE, Ready MP, Robertus JD (1991) The crystallographic refinement of ricin to 2.5 Å. Proteins Struct Funct Genet 10:240–250

    Article  CAS  PubMed  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Scarpa A, Guerci A (1982) Various uses of the castor oil plant (Ricinus communis L.) a review. J Ethnopharmacol 5:117–137

    Article  CAS  PubMed  Google Scholar 

  • Selvaprakash K, Chen YC (2017) Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelec 15(92):410–416. https://doi.org/10.1016/j.bios.2016.10.086

    Article  CAS  Google Scholar 

  • Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem 278:32292–32299

    Article  CAS  PubMed  Google Scholar 

  • Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR (2015) Recommended immunological assays to screen for ricin-containing samples. Toxins (Basel) 7(12):4967–4986. https://doi.org/10.3390/toxins7124858

    Article  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang M, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Sommer T, Jentsch S (1993) A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:176–179

    Article  CAS  PubMed  Google Scholar 

  • Sousa NL, Cabral GB, Vieira PM, Baldoni AB, Aragao FJL (2017) Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sci Rep 7:15385

    Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern D, Pauly D, Zydek M, Müller C, Avondet MA, Worbs S, Lisdat F, Dorner MB, Dorner BG (2016) Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor. Biosens Bioelec 15(78):111–117. https://doi.org/10.1016/j.bios.2015.11.020

    Article  CAS  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    Article  CAS  PubMed  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28:935–946

    Google Scholar 

  • Sun J, Wang C, Shao B, Wang Z, Xue D, Liu Y, Qi K, Yang Y, Niu Y (2017, November) Fast on-site visual detection of active ricin using a combination of highly efficient dual-recognition affinity magnetic enrichment and a specific gold nanoparticle probe. Anal Chem 89(22):12209–12216. https://doi.org/10.1021/acs.analchem.7b02944

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  CAS  PubMed  Google Scholar 

  • Sweeney EC, Tonevitsky AG, Temiakov DE, Agapov II, Saward S, Palmer RA (1997) Preliminary crystallographic characterization of ricin agglutinin. Proteins 28:586–589

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T, Matsuda T (1996) Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 391:341–345

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  CAS  PubMed  Google Scholar 

  • Tregear JW, Roberts LM (1992) The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol Biol 18:515–525

    Article  CAS  PubMed  Google Scholar 

  • Tully RE, Beevers H (1976) Protein bodies of castor bean endosperms: isolation, fractionation and characterisation of protein components. Plant Physiol 58:710–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Baudys J, Barr JR, Kalb SR (2016, July) Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF mass spectrometry. Anal Chem 88(13):6867–6872. https://doi.org/10.1021/acs.analchem.6b01486

  • Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, Han X, Liu F, Ji S, Liu X, Wan J (2009) The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J 58:606–617

    Article  CAS  PubMed  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbot D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for effective and high throughput gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  PubMed  Google Scholar 

  • Wiertz EJH, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Oeltman TN (1991) Ricin and related plant toxins: mechanisms of action and neurobiological applications. In: Keeler RF, Tu AT (eds) Handbook of natural toxins: toxicology of plant and fungal compounds, vol 6. Marcel Dekker, New York, p 665

    Google Scholar 

  • Worbs S, Skiba M, Bender J, Zeleny R, Schimmel H, Luginbühl W, Dorner BG (2017) An international proficiency test to detect, identify and quantify ricin in complex matrices (26 Nov 2015). Toxins (Basel) 7(12):4987–5010. https://doi.org/10.3390/toxins7124859

  • Xiong AS, Yao QH, Peng RH, Li X, Han PL, Fan HQ (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Huang AHC (1976) Protein bodies from the endosperm of castor bean subfractionation, protein components, lectins and changes during germination. Plant Physiol 58:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GF, Steahelin AL (1992) Functional compartmentation of the golgi apparatus of plant cells. Plant Physiol 99:1070–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YQ, Song J, Wang HL, Xu B, Liu F, He K, Wang N (2016) Rapid detection of ricin in serum based on Cu-chelated magnetic beads using mass spectrometry. J Amer Soc Mass Spectrom 27(4):748–751. https://doi.org/10.1007/s13361-016-1340-1

    Article  CAS  Google Scholar 

  • Zhu F, Zhou YK, Ji ZL, Chen XR (2018) The Plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front Plant Sci 9:146. https://doi.org/10.3389/fpls.2018.00146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial assistance provided by the Department of Science and Technology, Government of India, in the form of research grant (SR/SO/BB-58/2005/DST) for the work which was carried out at the Indian Institute of Oilseeds Research (Formerly Directorate of Oilseeds Research), Hyderabad, India, is duly acknowledged. Authors also acknowledge the support extended by the Director, ICAR-IIOR, during the course of investigation and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dinesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf Ashfaq, M., Soma Sekhar Reddy, P., Anil Kumar, C., Selvaraj, V.M., Dinesh Kumar, V. (2018). Ricin and RCA—The Enemies Within Castor (Ricinus communis L.): A Perspective on Their Biogenesis, Mechanism of Action, Detection Methods and Detoxification Strategies. In: Kole, C., Rabinowicz, P. (eds) The Castor Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97280-0_12

Download citation

Publish with us

Policies and ethics