Skip to main content

Epigenetic Regulation in Castor Bean Seeds

  • Chapter
  • First Online:
The Castor Bean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 287 Accesses

Abstract

Endosperm genome hypomethylation is an evolutionarily conserved feature in flowering plants and plays important roles in the development of seeds by the control of gene expression and genomic imprinting. However, it is difficult to dissect the regulatory mechanisms of DNA methylation and genomic imprinting in most dicots, in which endosperm is ephemeral and disappears with seed development. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), provides an excellent model for studying seed biology in dicotyledons due to its endosperm that is relatively large and persistent throughout the seed development. In this chapter, we dissect the potential regulatory mechanism of DNA methylation in castor bean seeds, emphasizing the processes of endosperm hypomethylation and CHH hypermethylation. We then identify and characterize the imprinted genes in castor bean endosperm. Their potential biological roles and epigenetic regulation were further analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer MJ, Fischer RL (2011) Genome demethylation and imprinting in the endosperm. Curr Opin Plant Biol 14:162–167

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  CAS  Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  CAS  Google Scholar 

  • Forbis TA, Floyd SK, de Queiroz A (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56:2112–2125

    Article  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  CAS  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Article  CAS  Google Scholar 

  • Gehring M, Missirian V, Henikoff S (2011) Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS ONE 6:e23687

    Article  CAS  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  Google Scholar 

  • Greenwood JS, Bewley JD (1982) Seed development in Ricinus communis castor bean. I. Descriptive morphology. Can J Bot 60:1751–1760

    Article  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  CAS  Google Scholar 

  • Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585

    Article  CAS  Google Scholar 

  • Haig D (2013) Kin conflict in seed development: an interdependent but fractious collective. Annu Rev Cell Dev Biol 29:189–211

    Article  CAS  Google Scholar 

  • Hatorangan MR, Laenen B, Steige K, Slotte T, Köhler C (2016) Rapid evolution of genomic imprinting in two species of the Brassicaceae. Plant Cell 28:1815–1827

    Article  CAS  Google Scholar 

  • Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Gene Dev 20:1848–1867

    Article  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  Google Scholar 

  • Hermon P, Srilunchang KO, Zou J, Dresselhaus T, Danilevskaya ON (2007) Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of thematernal allele. Plant Mol Biol 64:387–395

    Article  CAS  Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    Article  CAS  Google Scholar 

  • Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108:1755–1762

    Article  CAS  Google Scholar 

  • Hu L, Li N, Xu C, Zhong S, Lin X, Yang J, Zhou T, Yuliang A, Wu Y, Chen YR et al (2014) Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci USA 111:10642–10647

    Article  CAS  Google Scholar 

  • Jahnke S, Scholten S (2009) Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19:1677–1681

    Article  CAS  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    Article  CAS  Google Scholar 

  • Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66:69–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kermicle JL (1978) Imprinting of gene action in maize endosperm. In: Walden DB (ed) Maize Breeding and Genetics. Wiley and Sons, Hoboken, NJ, USA, pp 357–371

    Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    Article  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X et al (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  Google Scholar 

  • Köhler C, Weinhofer I (2010) Mechanisms and evolution of genomic imprinting in plants. Heredity 105:57–63

    Article  Google Scholar 

  • Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant cell 16:510–522

    Article  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  Google Scholar 

  • Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R, Wang L, Zhao J, Lang Z, Fan Y, Zhao J, Zhang C (2015) Genome-wide epigenetic regulation of gene transcription in maize seeds. PLoS ONE 10:e0139582

    Article  Google Scholar 

  • Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125

    Article  CAS  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210

    Article  CAS  Google Scholar 

  • Nodine MD, Bartel DP (2012) Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482:94–97

    Article  CAS  Google Scholar 

  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757

    Article  CAS  Google Scholar 

  • Raissig MT, Baroux C, Grossniklaus U (2011) Regulation and flexibility of genomic imprinting during seed development. Plant Cell 23:16–26

    Article  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  Google Scholar 

  • Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547:35–44

    Article  CAS  Google Scholar 

  • Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park JS, Park GT et al (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    Article  CAS  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  CAS  Google Scholar 

  • Vaughn MW, Tanurdzić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  Google Scholar 

  • Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233

    Article  CAS  Google Scholar 

  • Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM (2013) Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci USA 110:19639–19644

    Article  CAS  Google Scholar 

  • Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MT, Spillane C, Nordborg M, Rehmsmeier M, Köhler C (2011) High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet 7:e1002126

    Article  CAS  Google Scholar 

  • Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006a) Regulation of seed size by Hypomethylation of maternal and paternal genomes. Plant Physiol 142:1160–1168

    Article  CAS  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006b) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  CAS  Google Scholar 

  • Xin M, Yang R, Li G, Chen H, Laurie J, Ma C, Wang D, Yao Y, Larkins BA, Sun Q et al (2013) Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. Plant Cell 25:3212–3227

    Article  CAS  Google Scholar 

  • Xu W, Cui Q, Li F, Liu A (2013) Transcriptome-wide identification and characterization of microRNAs from castor bean Ricinus communis L. PLoS ONE 8:e69995

    Article  CAS  Google Scholar 

  • Xu W, Dai MY, Li F, Liu AZ (2014) Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucl Acids Res 42:6987–6998

    Article  CAS  Google Scholar 

  • Xu W, Yang T, Dong X, Li DZ, Liu A (2016) Genomic DNA methylation analyses reveal the distinct profiles in castor bean seeds with persistent endosperms. Plant Physiol 171:1242–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Liu Z, Gao L, Yu K, Feng M, Yao Y, Peng H, Hu Z, Sun Q, Ni Z, Xin M (2018) Genomic imprinting was evolutionarily conserved during wheat polyploidization. Plant Cell 30:37–47

    Article  CAS  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010a) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107:18729–18734

    Article  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010b) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 14:916–919

    Article  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  Google Scholar 

  • Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Zhao H, Guan H, Hu X, Jiao Y et al (2011) Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci USA 108:20042–20047

    Article  CAS  Google Scholar 

  • Zhang M, Xie S, Dong X, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G et al (2014) Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res 224:167–176

    Article  Google Scholar 

  • Zhang M, Li N, He W, Zhang H, Yang W, Liu B (2016a) Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J 85:424–436

    Article  CAS  Google Scholar 

  • Zhang Y, Mulpuri Sujatha, Liu A (2016b) Photosynthetic responses of seed coat under high light exposure increases lipid accumulation in non-green seeds of castor (Ricimus communis L.). Photosynth Res 128(2):125–140

    Article  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, W., Liu, A. (2018). Epigenetic Regulation in Castor Bean Seeds. In: Kole, C., Rabinowicz, P. (eds) The Castor Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97280-0_10

Download citation

Publish with us

Policies and ethics