Skip to main content

A Functional Expansion and a New Set of Rapidly Convergent Series Involving Zeta Values

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Abstract

We derive a power series expansion for the function \(\,x\mapsto x \log {(\tan x)} -x \log {x} +x - \mathrm{Ti_2} (\tan x)\,\), and then use it to obtain the expansion of the function \(\,x\mapsto \mathrm{Ti_2} (\tan x)\); as usual, \(\mathrm{Ti_2}\) denotes the inverse tangent integral. Two similar expansions involving Legendre’s chi-function follow from the above. These representations are used to obtain new rapidly convergent numerical series involving zeta values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ayoub, R.: Euler and the Zeta function. Amer. Math. Monthly 81, 1067–1086 (1974)

    Article  MathSciNet  Google Scholar 

  2. Chen, M.-P., Srivastava, H.M.: Some families of series representations for the Riemann \(\zeta (3)\). Result. Math. 33, 179–197 (1998)

    Article  MathSciNet  Google Scholar 

  3. Choe, R.: An elementary proof of \(\mathop {\sum }_{n=1}^{\infty } \frac{1}{n^2} = \frac{\pi ^2}{6}\). Amer. Math. Monthly 94, 662–663 (1987)

    MATH  Google Scholar 

  4. Da̧browski, A.: A note on the values of the Riemann Zeta Function at positive odd integers. Nieuw Arch. Wisk. 14, 199–207 (1996)

    Google Scholar 

  5. Euler, L.: Exercitationes analyticae. Novi Comment. Acad. Sci. Imp. Petropol. 17, 173–204 (1772)

    Google Scholar 

  6. Ewell, J.: A new series representation for \(\zeta (3)\). Amer. Math. Monthly 97, 219–220 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Ewell, J.: On the zeta function values \(\zeta (2k+1), k = 1, 2, \dots \). Rocky Mountain J. Math. 25, 1003–1012 (1995)

    Article  MathSciNet  Google Scholar 

  8. Lewin, L.: Polylogarithms and Associated Functions. Elsevier (North-Holland), New York/London/Amsterdam (1981)

    MATH  Google Scholar 

  9. Ramanujan, S.: On the integral \(\int ^{x}_{0} \frac{\tan ^{-1} t}{t} dt\). J. Indian Math. Soc. 7, 93–96 (1915)

    Google Scholar 

  10. Srivastava, H.M.: Some properties and results involving the zeta and associated functions. Funct. Anal. Approx. Comput. 7, 89–133 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht/Boston/London (2001)

    Book  Google Scholar 

  12. Srivastava, H.M., Tsumura, H.: Inductive construction of rapidly convergent series representations for \(\zeta (2n+1)\). Internat. J. Comput. Math. 80, 1161–1173 (2003)

    Article  MathSciNet  Google Scholar 

  13. Zhang, N.-Y., Williams, K.S.: Some series representations of \(\zeta (2n+1)\). Rocky Mountain J. Math. 23, 1581–1591 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Markov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markov, L. (2019). A Functional Expansion and a New Set of Rapidly Convergent Series Involving Zeta Values. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_22

Download citation

Publish with us

Policies and ethics