Skip to main content

Molecular Dynamics Study of the Solution Behaviour of Antimicrobial Peptide Indolicidin

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Abstract

Understanding the mechanism of action of antimicrobial peptides (AMPs) on bacterial cells requires detailed knowledge of how AMPs interact with bacterial membranes. Our hypothesis is that the peptides do not interact with the membrane as monomers, but rather form clusters, that collectively approach the cell and attack the membrane. In this paper we investigate the behavior of the antimicrobial peptide indolicidin in solution, prior to their interaction with the bacterial membrane, by means of coarse grain molecular dynamics simulations (CG-MD). We show that indolicidin in particular and, probably, charged linear AMPs in general tend to aggregate in solution, forming globular amphipathic clusters with a central hydrophobic core. The dependence of the clusters size on the peptide concentration and on the temperature is studied, as well as the influence of the finite size of the simulation box. Our results manifest the investigation of the AMPs behavior in solution prior to membrane impact as an indispensable element in revealing the mechanism of their antimicrobial activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmad, I., Perkins, W.R., Lupan, D.M., Selsted, M.E., Janoff, A.S.: Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim. Biophys. Acta 1237(2), 109–114 (1995)

    Article  Google Scholar 

  2. Ando, S., Mitsuyasu, K., Soeda, Y., Hidaka, M., Ito, Y., Matsubara, K., Shindo, M., Uchida, Y., Aoyagi, H.: Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J. Pept. Sci. 16(4), 171–177 (2010)

    Google Scholar 

  3. Berglund, N.A., Piggot, T.J., Jefferies, D., Sessions, R.B., Bond, P.J., Khalid, S.: Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLOS Comput. Biol. 11(4), 1–17 (2015)

    Article  Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  5. Brogden, K.A.: Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005)

    Article  Google Scholar 

  6. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17212484

    Article  Google Scholar 

  7. Copolovici, D.M., Langel, K., Eriste, E., Langel, I.: Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3), 1972–1994 (2014)

    Article  Google Scholar 

  8. Dehsorkhi, A., Castelletto, V., Hamley, I.W.: Self-assembling amphiphilic peptides. J. Pept. Sci. 20(7), 453–467 (2014)

    Article  Google Scholar 

  9. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  Google Scholar 

  10. Falla, T.J., Karunaratne, D.N., Hancock, R.E.W.: Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 271, 19298–19303 (1996)

    Article  Google Scholar 

  11. Flöck, D., Rossetti, G., Daidone, I., Amadei, A., Nola, A.D.: Aggregation of small peptides studied by molecular dynamics simulations. Proteins: Struct., Funct., Bioinf. 65(4), 914–921 (2006)

    Article  Google Scholar 

  12. Galdiero, S., Falanga, A., Cantisani, M., Vitiello, M., Morelli, G., Galdiero, M.: Peptide-lipid interactions: experiments and applications. Int. J. Mol. Sci. 14(9), 18758–18789 (2013)

    Article  Google Scholar 

  13. Hancock, R.E.W., Sahl, H.G.: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006)

    Article  Google Scholar 

  14. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  15. Högberg, L.D., Heddini, A.: The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 31(11), 509–515 (2010)

    Article  Google Scholar 

  16. Hsu, C.H., Chen, C., Jou, M.L., Lee, A.Y.L., Lin, Y.C., Yu, Y.P., Huang, W.T., Wu, S.H.: Structural and dna-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and dna. Nucleic Acids Res. 33(13), 4053–4064 (2005)

    Article  Google Scholar 

  17. Huang, H.W.: Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim. Biophys. Acta 1758(9), 1292–1302 (2006)

    Article  Google Scholar 

  18. Inglfsson, H.I., Lopez, C.A., Uusitalo, J.J., de Jong, D.H., Gopal, S.M., Periole, X., Marrink, S.J.: The power of coarse graining in biomolecular simulations. Wiley Interdisc. Rev. Comput. Mol. Sci. 4(3), 225–248 (2014)

    Article  Google Scholar 

  19. Jo, S., Kim, T., Iyer, V.G., Im, W.: Charmm-gui: a web-based graphical user interface for charmm. J. Comput. Chem. 29(11), 1859–1865 (2008)

    Article  Google Scholar 

  20. de Jong, D.H., Singh, G., Bennett, W.F.D., Arnarez, C., Wassenaar, T.A., Schfer, L.V., Periole, X., Tieleman, D.P., Marrink, S.J.: Improved parameters for the martini coarse-grained protein force field. J. Chem. Theor. Comput. 9(1), 687–697 (2013)

    Article  Google Scholar 

  21. Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116(14), 7898–7936 (2016)

    Article  Google Scholar 

  22. López-Meza, J.E., Ochoa-Zarzosa, A., Barboza-Corona, J.E., Bideshi, D.K.: Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed. Res. Int. 2015(367243), 2 (2015)

    Google Scholar 

  23. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The martini force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)

    Article  Google Scholar 

  24. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.J.: The martini coarse-grained force field: extension to proteins. J. Chem. Theor. Comput. 4(5), 819–834 (2008)

    Article  Google Scholar 

  25. Neale, C., Hsu, J., Yip, C., Pomès, R.: Indolicidin binding induces thinning of a lipid bilayer. Biophys. J. 106(8), L29–L31 (2014)

    Article  Google Scholar 

  26. Nguyen, L.T., Haney, E.F., Vogel, H.J.: The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9), 464–472 (2011)

    Article  Google Scholar 

  27. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)

    Article  Google Scholar 

  28. Pasupuleti, M., Schmidtchen, A., Malmsten, M.: Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 32(2), 143–171 (2012)

    Article  Google Scholar 

  29. Pathan, F.K., Venkata, D.A., Panguluri, S.K.: Recent patents on antimicrobial peptides. Recent Pat. DNA Gene Sequences (DIscontinued) 4(1), 10–16 (2010)

    Article  Google Scholar 

  30. Qi, Y., Inglfsson, H.I., Cheng, X., Lee, J., Marrink, S.J., Im, W.: Charmm-gui martini maker for coarse-grained simulations with the martini force field. J. Chem. Theor. Comput. 11(9), 4486–4494 (2015)

    Article  Google Scholar 

  31. Rozek, A., Friedrich, C.L., Hancock, R.E.W.: Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39(51), 15765–15774 (2000)

    Article  Google Scholar 

  32. Selsted, M., Novotny, M., Morris, W., Tang, Y., Smith, W., Cullor, J.: Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267(7), 4292–4295 (1996)

    Google Scholar 

  33. Takahashi, D., Shukla, S.K., Prakash, O., Zhang, G.: Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9), 1236–1241 (2010)

    Article  Google Scholar 

  34. Toke, O.: Antimicrobial peptides: new candidates in the fight against bacterial infections. Peptide Sci. 80(6), 717–735 (2005)

    Article  Google Scholar 

  35. Wang, Y., Chen, C.H., Hu, D., Ulmschneider, M.B., Ulmschneider, J.P.: Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat. Commun. 7(13535) (2016).

    Article  Google Scholar 

  36. Yeaman, M.R., Yount, N.Y.: Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55(1), 27–55 (2003)

    Article  Google Scholar 

  37. Yesylevskyy, S.O., Schfer, L.V., Sengupta, D., Marrink, S.J.: Polarizable water model for the coarse-grained martini force field. PLOS Comput. Biol. 6(6), 1–17 (2010)

    Article  Google Scholar 

  38. Zhuang, J., Coates, C.J., Zhu, H., Zhu, P., Wu, Z., Xie, L.: Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev. Comp. Immunol. 49(1), 96–102 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The simulations were performed on the supercomputer Avitohol at BAS and on the HPC Cluster at the Faculty of Physics of Sofia University St. Kl. Ohridski. This work was supported in part by National Science Fund under Grant DNTS-China-01/9/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rositsa Marinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marinova, R., Petkov, P., Ilieva, N., Lilkova, E., Litov, L. (2019). Molecular Dynamics Study of the Solution Behaviour of Antimicrobial Peptide Indolicidin. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_21

Download citation

Publish with us

Policies and ethics