Skip to main content

Initial Calibration of MEMS Accelerometers, Used for Measuring Inclination and Toolface

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Included in the following conference series:

  • 387 Accesses

Abstract

In the present work, we consider calibrating MEMS accelerometers for the purpose of determining orientation in space. We propose a new objective function whose minimization gives an estimate of the calibration coefficients. The latter takes into account the specifics of measuring toolface and inclination in seek of better accuracy, when the device is used for this purpose. To the best of our knowledge, such an objective function has not been mentioned in the literature. The calibration algorithm is described in detail because, even though, some of the steps are standard from the point of view of a numerical analyst, this could be helpful for an engineer or an applied scientist, looking to make a concrete implementation for applied purposes. On the basis of numerical experiments with sensor data, we compare the accuracy of the proposed algorithm with a classical method. We show that the proposed one has an advantage when sensors are to be used for orientation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us remark that when using formula (1) in computer arithmetic, it is wise to substitute the condition for the first case on the right-hand side with \(atan2(a_y,a_x)\ge -\varepsilon \) for some \(\varepsilon > 0\) in order to avoid large errors for near-zero angles.

References

  1. Aggarwal, P., Syed, Z., Niu, X., El-Sheimy, N.: Thermal Calibration of Low Cost MEMS Sensors for Integrated Positioning. The Institute of Navigation National Technical Meeting, Navigation Systems, p. 2224 (2007)

    Google Scholar 

  2. Aggarwal, P., Syed, Z., Niu, X., El-Sheimy, N.: A standard testing and calibration procedure for low cost MEMS inertial sensors and units. J. Navig. 61, 323–336 (2008)

    Article  Google Scholar 

  3. Aydemir, G.A., Saranli, A.: Characterization and calibration of MEMS inertial sensors for state and parameter estimation applications. Measurement 45, 12101225 (2012)

    Article  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM (1996)

    Google Scholar 

  5. Forsberg, T., Grip, N., Sabourova, N.: Non-iterative calibration for accelerometers with three non-orthogonal axes and cross-axis interference. Research Report No. 8, Department of Engineering Sciences and Mathematics, Division of Mathematics, Lulea University of Technology (2012)

    Google Scholar 

  6. Georgieva, I., Hofreither, C., Ilieva, T., Ivanov, T., Nakov, S.: Laboratory calibration of a MEMS accelerometer sensor. ESGI’95 Problems and Final Reports, pp. 61–86 (2013)

    Google Scholar 

  7. Hou, H.: Modeling Inertial Sensors Errors using Allan Variance. Library and Archives Canada (2005)

    Google Scholar 

  8. Illfelder, H., Hamlin, K., McElhinney, G.: A gravity-based measurement-while-drilling technique determines borehole azimuth from toolface and inclination measurements. In ADDE 2005 National Technical Conference and Exhibition, Houston, Texas (2005)

    Google Scholar 

  9. Kang, J., Wang, B., Hu, Z., Wang, R., Liu, T.: Study of drill measuring system based on MEMS accelerative and magnetoresistive sensor. In: The Ninth International Conference on Electronic Measurement and Instruments (ICEMI2009)

    Google Scholar 

  10. Luczak, S., Oleksiuk, W., Bodnicki, M.: Sensing tilt with MEMS accelerometers. IEEE Sens. J. 6, 1669–1675 (2006)

    Article  Google Scholar 

  11. Strang, G.: Introduction to Linear Algebra, 3rd edn. Wellesley-Cambridge Press, Wellesley (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of the authors has been partially supported by the Sofia University “St. Kl. Ohridski” under contract No. 80.10-11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina S. Lyutskanova-Zhekova .

Editor information

Editors and Affiliations

Appendix

Appendix

Here, we shall give formulas for computing the Jacobian matrix, associated with the linearization of the minimization problem (6).

We have

$$ M.\hat{\mathbf{a }}_i+\mathbf b =\left[ \begin{array}{c} m_{xx}.\hat{a}_{i,x}+m_{xy}.\hat{a}_{i,y}+m_{xz}.\hat{a}_{i,z}+b_x\\ m_{yx}.\hat{a}_{i,x}+m_{yy}.\hat{a}_{i,y}+m_{yz}.\hat{a}_{i,z}+b_y\\ m_{zx}.\hat{a}_{i,x}+m_{zy}.\hat{a}_{i,y}+m_{zz}.\hat{a}_{i,z}+b_z \end{array} \right] . $$

Let us define for \(i=\overline{1,n}\) and \(j=\overline{1,12}\)

$$\begin{aligned} \begin{aligned} J_{2i-1,j}&=\frac{\partial r_{2i-1}}{\partial p_j}=\frac{360^\circ }{2\pi }\frac{\partial }{\partial p_j}tf(a_i)\\&=\frac{360^\circ }{2\pi }\frac{\partial }{\partial p_j}\arctan \left( \frac{m_{xx}.\hat{a}_{i,x}+m_{xy}.\hat{a}_{i,y}+m_{xz}.\hat{a}_{i,z}+b_x}{m_{yx}.\hat{a}_{i,x}+m_{yy}.\hat{a}_{i,y}+m_{yz}.\hat{a}_{i,z}+b_y}\right) \\&=\frac{360^\circ }{2\pi }\frac{\partial }{\partial p_j}\arctan \left( \frac{p_1.\hat{a}_{i,x}+p_2.\hat{a}_{i,y}+p_3.\hat{a}_{i,z}+p_{10}}{p_4.\hat{a}_{i,x}+p_5.\hat{a}_{i,y}+p_6.\hat{a}_{i,z}+p_{11}}\right) \\&=:\frac{360^\circ }{2\pi }\frac{\partial }{\partial p_j}\arctan \left( \frac{A}{B}\right) . \end{aligned} \end{aligned}$$
(13)

Let us denote for further use:

$$ \begin{aligned} B_1&=p_1 \hat{a}_{i,x}+p_2 \hat{a}_{i,y}+p_3 \hat{a}_{i,z}+p_{10},\\ B_2&=p_4 \hat{a}_{i,x}+p_5 \hat{a}_{i,y}+p_6 \hat{a}_{i,z}+p_{11},\\ \end{aligned} $$
$$ \begin{aligned} B_3&=p_7 \hat{a}_{i,x}+p_8 \hat{a}_{i,y}+p_9 \hat{a}_{i,z}+p_{12},\\ B&=\sqrt{B_1^2+B_2^2+B_3^2},~~A=B_1^2+B_2^2. \end{aligned} $$

After straightforward (but rather lengthy) computations that we omit due to lack of space, one can obtain:

$$ \begin{aligned}&J_{2i-1,1}=\frac{360^\circ \hat{a}_{i,x}}{2\pi B\left( 1+\frac{A^2}{B^2}\right) },~ J_{2i-1,2}=\frac{360^\circ \hat{a}_{i,y}}{2\pi B\left( 1+\frac{A^2}{B^2}\right) },\\&J_{2i-1,3}=\frac{360^\circ \hat{a}_{i,z}}{2\pi B\left( 1+\frac{A^2}{B^2}\right) },~ J_{2i-1,10}=\frac{360^\circ }{2\pi B\left( 1+\frac{A^2}{B^2}\right) },\\&J_{2i-1,4}=-\frac{360^\circ A \hat{a}_{i,x}}{2\pi B^2\left( 1+\frac{A^2}{B^2}\right) },~ J_{2i-1,5}=-\frac{360^\circ A \hat{a}_{i,y}}{2\pi B^2\left( 1+\frac{A^2}{B^2}\right) },\\&J_{2i-1,6}=-\frac{360^\circ A \hat{a}_{i,z}}{2\pi B^2\left( 1+\frac{A^2}{B^2}\right) },~ J_{2i-1,11}=-\frac{360^\circ A }{2\pi B^2\left( 1+\frac{A^2}{B^2}\right) },\\&J_{2i-1,7}=J_{2i-1,8}=J_{2i-1,9}=J_{2i-1,12}=0. \end{aligned} $$

Further, if

$$\begin{aligned} \frac{360^\circ }{2\pi }\left( \arccos \left( \frac{\hat{a}_{i,z}}{\sqrt{\hat{a}_{i,x}^2+\hat{a}_{i,y}^2+\hat{a}_{i,z}^2}}\right) \right) >60^\circ \end{aligned}$$
(14)

holds true, we have:

$$ \begin{aligned}&J_{2i,1}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,x}B_1A}{B^4}+\frac{2\hat{a}_{i,x}B_1}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,2}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,y}B_1A}{B^4}+\frac{2\hat{a}_{i,y}B_1}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},\\&J_{2i,3}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,z}B_1A}{B^4}+\frac{2\hat{a}_{i,z}B_1}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,10}=-\frac{360^\circ }{2\pi }\frac{-\frac{2B_1A}{B^4}+\frac{2B_1}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},\\&J_{2i,4}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,x}B_2A}{B^4}+\frac{2\hat{a}_{i,x}B_2}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,5}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,y}B_2A}{B^4}+\frac{2\hat{a}_{i,y}B_2}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},\\&J_{2i,6}=-\frac{360^\circ }{2\pi }\frac{-\frac{2\hat{a}_{i,z}B_2A}{B^4}+\frac{2\hat{a}_{i,z}B_2}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,11}=-\frac{360^\circ }{2\pi }\frac{-\frac{2B_2A}{B^4}+\frac{2B_2}{B^2}}{2\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},\\&J_{2i,7}=\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,x}AB_3}{B^4\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,8}=\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,y}AB_3}{B^4\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},\\&J_{2i,9}=\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,z}AB_3}{B^4\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}},~ J_{2i,12}=\frac{360^\circ }{2\pi }\frac{AB_3}{B^4\sqrt{\frac{A}{B^2}}\sqrt{1-\frac{A}{B^2}}}. \end{aligned} $$

Otherwise, if condition (14) is not fulfilled, then:

$$ \begin{aligned}&J_{2i,1}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,x}B_1B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,2}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,y}B_1B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},\\&J_{2i,3}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,z}B_1B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,10}=-\frac{360^\circ }{2\pi }\frac{B_1B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},\\&J_{2i,4}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,x}B_2B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,5}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,y}B_2B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},\\&J_{2i,6}=-\frac{360^\circ }{2\pi }\frac{\hat{a}_{i,z}B_2B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,11}=-\frac{360^\circ }{2\pi }\frac{B_2B_3}{B^3\sqrt{1-\frac{B_3^2}{B^2}}},\\&J_{2i,7}=-\frac{360^\circ }{2\pi }\frac{-\frac{\hat{a}_{i,x}B_3^2}{B^3}+\frac{\hat{a}_{i,x}}{B}}{\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,8}=-\frac{360^\circ }{2\pi }\frac{-\frac{\hat{a}_{i,y}B_3^2}{B^3}+\frac{\hat{a}_{i,y}}{B}}{\sqrt{1-\frac{B_3^2}{B^2}}},\\&J_{2i,9}=-\frac{360^\circ }{2\pi }\frac{-\frac{\hat{a}_{i,z}B_3^2}{B^3}+\frac{\hat{a}_{i,z}}{B}}{\sqrt{1-\frac{B_3^2}{B^2}}},~ J_{2i,12}=-\frac{360^\circ }{2\pi }\frac{-\frac{B_3^2}{B^3}+\frac{1}{B}}{\sqrt{1-\frac{B_3^2}{B^2}}}. \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, T.B., Lyutskanova-Zhekova, G.S. (2019). Initial Calibration of MEMS Accelerometers, Used for Measuring Inclination and Toolface. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_14

Download citation

Publish with us

Policies and ethics