Skip to main content

Genes/Quantitative Trait Loci and Associated Molecular Mechanisms Identified in Capsicum Genome for Tolerance to Abiotic and Biotic Stresses

  • Chapter
  • First Online:
The Capsicum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Capsicum is one of the most important vegetable crops of the family Solanaceae and is widely used as spice due to its pungent nature. Besides, Capsicum fruit rich in metabolites and vitamins; and also has anticancerous property, which further increases the importance of this crop. However, Capsicum crop is highly affected by abiotic/biotic stresses such as drought, heat, cold, salinity, and pathogens. To overcome these stresses, plants adapted several mechanisms such as the production of osmoprotectant, proline, galactinol and raffinose, and the reduction of reactive oxygen species. Autophagy also plays an important role to provide tolerance against stresses through degradation of toxins. Among the others, transcription factors and plasma membrane intrinsic proteins, and plant endophytes are found to be involved in regulating stress tolerance mechanism. Furthermore, in Capsicum genome, a number of genes and quantitative trait loci (QTLs) involved in stress tolerance mechanism have been identified. In this chapter, a detail compilation of important molecular mechanisms and associated genes/QTLs involved toward imparting abiotic and biotic stress tolerance in Capsicum genome is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Tiwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aidoo MK, Sherman T, Lazarovitch N, Fait A, Rachmilevitch S (2017) A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature. Physiol Plant 161:196–210

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Luo D-X, Khan A, Haq S ul, Gai W-X, Zhang H-X, Cheng G-X, Muhammad I, Gong Z-H (2018) Classification and genome-wide analysis of chitin-binding proteins gene family in pepper (Capsicum annuum L.) and transcriptional regulation to Phytophthora capsici, abiotic stresses and hormonal applications. Intl J Mol Sci 19. https://doi.org/10.3390/ijms19082216

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asselbergh B, Achuo AE, Hofte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek W, Lim S, Lee SC (2016) Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response. Plant Mol Biol 91:149–160

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Dutta R, Roy S, Ngachan SV (2014) First report of chilli veinal mottle virus in Naga chilli (Capsicum chinense) in Meghalaya, India. Virus Dis 25:142–143

    Article  Google Scholar 

  • Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A (2016) Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs. Front Plant Sci 7:632

    Article  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Ben-Chaim A, Grube RC, Lapidot M, Jahn M, Paran I (2001) Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor Appl Genet 102:1213–1220

    Article  CAS  Google Scholar 

  • Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Caranta C, Pflieger S, Lefebvre V, Daubèze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RG, Li HX, Zhang LY, Zhang JH, Xiao JH, Ye ZB (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Guo W, Yin Y, Gong Z-H (2014) A novel F-Box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Intl J Mol Sci 15:2413–2430

    Article  CAS  Google Scholar 

  • Cheng Y, Ahammed GJ, Yu J, Yao Z, Ruan M, Ye Q, Li Z, Wang R, Feng K, Zhou G, Yang Y, Diao W, Wan H (2016) Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper. Sci Rep 6:39000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhapekar SS, Jaiswal V, Ahmad I, Gaur R, Ramchiary N (2018) Progress and prospects in capsicum breeding for biotic and abiotic stresses. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer Nature, Singapore, pp 279–322

    Chapter  Google Scholar 

  • Cho SK, Chung HS, Ryu MY, Park MJ, Lee MM, Bahk Y-Y, Kim J, Pai HS, Kim WT (2006a) Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol 142:1664–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SK, Kim JE, Park J-A, Eom TJ, Kim WT (2006b) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235:1369–1382

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defence response to bacterial pathogens. Plant Physiol 145:890–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30:867–877

    Article  CAS  PubMed  Google Scholar 

  • Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24:410–419

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) CYTOSOLIC ASCORBATE PEROXIDASE 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao W, Snyder JC, Wang S, Liu J, Pan B, Guo G, Ge W, Dawood MHSA (2018) Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. Intl J Mol Sci 19. https://doi.org/10.3390/ijms19041028

  • Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze A, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat stable resistance in pepper (Capsicum annuum L.) Theor Appl Genet 99:496–502

    Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Fazari A et al (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne Spp.) Theor Appl Genet 103:592–600

    Google Scholar 

  • Djian-Caporalino C, Fazari A, Arguel MJ et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trend Plant Sci 15:573–581

    Article  CAS  Google Scholar 

  • Fazari A, PalloixA WL, Hua YM, Sage-Palloix AM, Zhang BX, Djian-Caporalino C (2012) The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131:665–673

    Article  CAS  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  CAS  PubMed  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genom 7:263

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Futija Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor Appl Genet 129:2019–2042

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Chang F, Shen J, Shi F, Xie L, Zhan J (2014) Complete genome analysis of a novel recombinant isolate of potato virus Y from China. Arch Virol 159:3439–3442

    Article  CAS  PubMed  Google Scholar 

  • Guo W-L, Wang S-B, Chen R-G, Chen B-H, Du X-H, Yin Y-X, Gong Z-H, Zhang Y-Y (2015) Characterization and expression profile of CaNAC2 pepper gene. Front Plant Sci 6:755

    PubMed  PubMed Central  Google Scholar 

  • Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC (2017) Rapid identification of QTLs underlying resistance to cucumber mosaic virus in pepper (Capsicum frutescens). Theor Appl Genet 130:41–52

    Article  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:1–7

    Article  Google Scholar 

  • Hong Truong HT, Kim JH, Cho MC, Chae SY, Lee HE (2013) Identification and development of molecular markers linked to Phytophthora root rot resistance in pepper (Capsicum annuum L.) Eur J Plant Pathol 135:289–297

    Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Hwang BK (2007) Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63:571–588

    Article  CAS  PubMed  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-Lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JN, Li J, Liu WY, An SJ, Cho H, Her NH, Yeam I, Kim D, Kang B (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli Veinal mottle virus in pepper. Mol Cells 27:329–336

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Isbat M, Zeba N, Kim SR, Hong CB (2009) A BAX inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J Plant Physiol 166:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Haque MS, Hossain MK, Hasan MM (2014) Diverse antioxidative effects in Pui vegetable (Basella alba) induced by high temperature stress. Intl J Agron Agri Res 5:135–147

    Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation: what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signalling pathway in rice–Magnaporthe grisea interaction. Mol Plant-Micr Interact 23:791–798

    Article  CAS  Google Scholar 

  • Jing H, Li C, Ma F, Ma J-H, Khan A, Wang X, Zhao L-Y, Gong Z-H, Chen R-G (2016) Genome-wide identification, expression diversification of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS ONE 11:e0161073

    Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kang WH, Hoang NH, Yang HB et al (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.) Theor Appl Genet 120:1587–1596

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Hwang BK (2012) The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:843–855

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol 55:883–904

    Article  CAS  PubMed  Google Scholar 

  • Kim S-Y, Kim Y-C, Lee J-H, Oh S-K, Chung E, Lee S, Lee Y-H, Choi D, Park JM (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim Biophys Acta 1729:141–146

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Nahm S-H, Lee H-R, Yoon G-B, Kim K-T, Kang B-C, Choi D, Kweon OY, Cho M-C, Kwon J-K, Han J-H, Kim J-H, Park M, Ahn JH, Choi SH, Her NH, Sung J-H, Kim B-D (2008) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118:15–27

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Han J-H, Kim S, Lee HR, Shin J-S, Kim J-H, Cho J, Kim YH, Lee HJ, Kim B-D, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058

    Article  PubMed  Google Scholar 

  • Kim DS, Choi HW, Hwang BK (2014a) Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses. Planta 240:827–839

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Park H-M, Chae S, Lee T-H, Hwang D-J, Oh S-D, Park J-S, Song D-G, Pan C-H, Choi D, Kim Y-H, Nahm BH, Kim Y-K (2014b) A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. PLoS ONE 9:e90588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsten R, Jaglo-ottosen SJ, Gilmour DG, Zarka OS, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kusajima M, Yasuda M, Kawashima A, Nojiri H, Yamane H, Nakajima M, Akutsu K, Nakashita H (2010) Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. J Gen Plant Pathol 76:161–167

    Article  CAS  Google Scholar 

  • Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Choi DS, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409–424

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Daubèze A-M, Rouppe van der Voort J, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666

    Article  CAS  PubMed  Google Scholar 

  • Li N, Yin Y, Wang F, Yao M (2018) Construction of a high-density genetic map and identification of QTLs for cucumber mosaic virus resistance in pepper (Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq). Breed Sci 68:233–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Lee SC (2014) Functional roles of the pepper MLO protein gene, CaMLO2, in abscisic acid signaling and drought sensitivity. Plant Mol Biol 85:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC (2015a) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Hwang BK, Lee SC (2015b) Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance. Plant Mol Biol 89:143–156

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Zhou XY, Dong N, Liu X, Zhang HY, Zhang ZY (2011) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genom 11:431–443

    Article  CAS  Google Scholar 

  • Liu W-Y, Kang J-H, Jeong H-S, Choi H-J, Yang H-B, Kim K-T, Choi D, Choi GJ, Jahn M, Kang B-C (2014) Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor Appl Genet 127:2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shi L, Liu Y, Tang Q, Shen L, Yang S, Cai J, Yu H, Wang R, Wen J, Lin Y, Hu J, Liu C, Zhang Y, Mou S, He S (2015) Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum. Front Plant Sci 6:780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N 92005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139–58

    Google Scholar 

  • Maharijaya A, Vosman B, Steenhuis-Broers G, Pelgrom K, Purwito A, Visser RGF, Voorrips RE (2015) QTL mapping of thrips resistance in pepper. Theor Appl Genet 128:1945–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min HJ, Jung YJ, Kang BG, Kim WT (2016) CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice (Oryza sativa L.). Mol Cells 39:250–257

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  PubMed  Google Scholar 

  • Moon S-J, Han S-Y, Kim D-Y, Yoon IS, Shin D, Byun M-O, Kwon H-B, Kim B-G (2015) Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. Plant Mol Biol 89:421–431

    Article  CAS  PubMed  Google Scholar 

  • Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S (2017) CaHDZ27, a homeodomain leucine zipper i protein, positively regulates the resistance to Ralstonia solanacearum infection in pepper. Mol Plant-Micr Interact https://doi.org/10.1094/MPMI-06-17-0130-R

  • Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142:1523–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naegele RP, Ashrafi H, Hill TA, Chin-Wo SR, Van Deynze AE, Hausbeck MK (2014) QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population. Phytopathology 104:479–483

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    Article  CAS  PubMed  Google Scholar 

  • Oh S-K, Yi SY, Yu SH, Moon JS, Park JM, Choi D (2006) CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Mol Cells 22:58–64

    CAS  PubMed  Google Scholar 

  • Oh SK, Baek KH, Seong ES et al (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Lim CW, Baek W, Kim J-H, Lim S, Kim SH, Kim K-N, Lee SC (2017) The pepper WPP domain Protein, CaWDP1, acts as a novel negative regulator of drought stress via ABA signaling. Plant Cell Physiol 58:779–788

    Article  CAS  PubMed  Google Scholar 

  • Peng XX, Tang XK, Zhou PL, Hu YJ, Deng XB, He Y, Wang HH (2011) Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agri Sci China 10:893–901

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Mo N, Muhammad T, Liang Y (2018) Genome-Wide Analysis of DCL, AGO, and RDR Gene families in pepper (Capsicum annuum L.). Intl J Mol Sci 19. https://doi.org/10.3390/ijms19041038

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim K-T, Falise M, Kang B-C, Jahn MM (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto. 5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor Appl Genet 110:605–612

    Article  CAS  PubMed  Google Scholar 

  • Reeves G, Monroy-Barbosa A, Bosland PW (2013) A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. Phytopathology 103:472–478

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. AnnuRev Plant Biol 61:621–649

    Article  CAS  Google Scholar 

  • Romer P, Jordan T, Lahaye T (2010) Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breed 129:737–740

    Article  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio M, Caranta C, Palloix A (2008) Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR. Genome 51:767–771

    Article  CAS  PubMed  Google Scholar 

  • Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12:30–43

    Article  CAS  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YS, Choi JY, Kim SJ, Kim EY, Shin JS, Kim WT (2012) Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Rep 31:1659–1665

    Article  CAS  PubMed  Google Scholar 

  • Seong ES, Wang M-H (2008) A novel CaAbsi1 gene induced by early-abiotic stresses in pepper. BMB Rep 41:86–91

    Article  CAS  PubMed  Google Scholar 

  • Seong ES, Choi D, Cho HS, Lim CK, Cho HJ, Wang M-H (2007) Characterization of a stress-responsive ankyrin repeat-containing zinc finger protein of Capsicum annuum (CaKR1). J Biochem Mol Biol 40:952–958

    CAS  PubMed  Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Mao SL, Zhang ZH, Palloix A, Wang LH, Zhang BX (2015) Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hort 181:81–88

    Article  CAS  Google Scholar 

  • Suwor P, Sanitchon J, Thummabenjaone P, Kumar S, Hawongstien ST (2017) Inheritance analysis of anthracnose resistance and marker-assisted selection in introgression populations of chili (Capsicum annuum L.). Sci Hort 220:20–26

    Article  CAS  Google Scholar 

  • Szabala BM, Fudali S, Rorat T (2014) Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae. Planta 239:847–863

    Article  CAS  PubMed  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molr Cell 41:649–660

    Article  CAS  Google Scholar 

  • Tamisier L, Rousseau E, Barraillé S, Nemouchi G, Szadkowski M, Mailleret L, Grognard F, Fabre F, Moury B, Palloix A (2017) Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. J Gen Virol 98:1923–1931

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubèze A-M, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    Article  CAS  PubMed  Google Scholar 

  • Thabuis A, Lefebvre V, Bernard G, Daubèze AM, Phaly T, Pochard E, Palloix A (2004) Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor Appl Genet 109:342–351

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui T, Kato W, Asada Y et al (2009) DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122:633–643

    Article  CAS  PubMed  Google Scholar 

  • Vallejos CE, Jones V, Stall RE et al (2010) Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor Appl Genet 121:37–46

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42

    Article  CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya L, Groenwold R (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet 109:1275–1282

    Article  PubMed  Google Scholar 

  • Walley JW, Dehesh K (2010) Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J Integr Plant Biol 52:354–359

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhu X, Tooley P, Zhang X (2013) Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. Plant Mol Biol 81:379–400

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu X, Guo J, Liu C, Fu N, Shen H (2015) Identification and expression analysis of candidate genes associated with defense responses to Phytophthora capsici in pepper line “PI 201234”. Intl J Mol Sci 16:11417–11438

    Article  CAS  Google Scholar 

  • Wang H, Niu H, Zhai Y, Lu M (2017) Characterization of BiP genes from pepper (Capsicum annuum L.) and the role of CaBiP1 in response to endoplasmic reticulum and multiple abiotic stresses. Front Plant Sci 8:1122

    Google Scholar 

  • Wong HL, Shimamoto K (2009) Sending ROS on a bullet train. Sci Signal 2: pe60

    Google Scholar 

  • Wu Z, Cheng J, Cui J, Xu X, Liang G, Luo X, Chen X, Tang X, Hu K, Qin C (2016) Genome-wide identification and expression profile of dof transcription factor gene family in pepper (Capsicum annuum L.). Front Plant Sci 7:574

    Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Li N, Wang F, Ye Z (2013) Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica 193:135–145

    Article  CAS  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y et al (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi SY, Kim J-H, Joung Y-H, Lee S, Kim W-T, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136:2862–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi SY, Lee DJ, Yeom SI, Yoon J, Kim YH, Kwon SY, Choi D (2010) A novel pepper (Capsicum annuum) receptor-like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions. New Phytol 185:701–715

    Article  CAS  PubMed  Google Scholar 

  • Yin Y-X, Wang S-B, Zhang H-X, Xiao H-J, Jin J-H, Ji J-J, Jing H, Chen R-G, Arisha MH, Gong Z-H (2015) Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.). Gene 563:87–93

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Zhan Y, Feng X, Huang Z-A, Sun C (2017) Identification and expression profiling of the auxin response factors in Capsicum annuum L. under abiotic stress and hormone treatments. Intl J Mol Sci 18: https://doi.org/10.3390/ijms18122719

  • Zhai Y, Guo M, Wang H, Lu J, Liu J, Zhang C, Gong Z, Lu M (2016) Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front Plant Sci 7:131

    PubMed  PubMed Central  Google Scholar 

  • Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L (2006) Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem 44:274–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Jia QL, Li DW, Wang JE, Yin YX, Gong ZH (2013) Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian. Intl J Mol Sci 14:8985–9004

    Article  CAS  Google Scholar 

  • Zheng Z, Nonomura T, Appiano M et al (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8(7):e70723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Resource Networking Grant, UGC-SAP, and DST FIST program to School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirala Ramchiary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaiswal, V., Gahlaut, V., Dubey, M., Ramchiary, N. (2019). Genes/Quantitative Trait Loci and Associated Molecular Mechanisms Identified in Capsicum Genome for Tolerance to Abiotic and Biotic Stresses. In: Ramchiary, N., Kole, C. (eds) The Capsicum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97217-6_7

Download citation

Publish with us

Policies and ethics