Skip to main content

Molecular Mapping and Identification of QTLs and Genes for Economically Important Traits in the Capsicum Genome

  • Chapter
  • First Online:
The Capsicum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1122 Accesses

Abstract

Pepper exhibits large phenotypic variation for economically important traits that are mostly quantitatively inherited. In this chapter, we review the quantitative trait locus (QTL) mapping studies focused on plant growth and fruit yield and quality traits. We further review recent developments of genomic resources and genotyping techniques and their utilization for construction of ultra-high-density maps of pepper including newly developed maps established for the less explored Capsicum species Capsicum baccatum. These studies allowed a comprehensive understanding of the genetic basis for regulation of these traits in pepper and the development of molecular markers linked to favorable genes and their introgression to elite backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alimi NA, Bink M, Dieleman JA, Magán JJ, Wubs AM et al (2013) Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper. Theor Appl Genet 126:2597–2625

    Article  CAS  Google Scholar 

  • Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom 13:571

    Article  CAS  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix A-M, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  CAS  Google Scholar 

  • Ben Chaim A, Paran I, Grube R, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Ben Chaim A, Borovsky E, De Jong W, Paran I (2003a) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Article  Google Scholar 

  • Ben Chaim A, Borovsky E, Rao GU, Tanyolac B, Paran I (2003b) fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46:1–9

    Article  CAS  Google Scholar 

  • Ben Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC et al (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  CAS  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T et al (2003) Molecular mapping of capsaicinoid biosynthesis genes and QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  CAS  Google Scholar 

  • Borovsky Y, Paran I (2008) Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theor Appl Genet 117:235–240

    Article  CAS  Google Scholar 

  • Borovsky Y, Paran I (2011) Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. Theor Appl Genet 123:657–665

    Article  Google Scholar 

  • Borovsky Y, Oren Shamir M, Ovadia R, De Jong W, Paran I (2004) The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor Appl Genet 109:23–29

    Article  CAS  Google Scholar 

  • Borovsky Y, Tadmor Y, Bar E, Meir A, Lewinsohn E, Paran I (2013) Induced mutation in BETA-carotene hydroxylase results in accumulation of beta-carotene and conversion of red to orange color in pepper fruit. Theor Appl Genet 126:557–565

    Article  CAS  Google Scholar 

  • Borovsky Y, Sharma VK, Verbakel H, Paran I (2015) CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum. Theor Appl Genet 128:1073–1082

    Article  CAS  Google Scholar 

  • Brand A, Borovsky Y, Meir S, Rogachev I, Aharoni A, Paran I (2012) pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size. Planta 235:579–588

    Article  CAS  Google Scholar 

  • Brand A, Borovsky Y, Hill T, Rahman KA, Bellalou A, Van Deynze A, Paran I (2014) CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet 127:2139–2148

    Article  CAS  Google Scholar 

  • Chakrabarti M, Zhang N, Sauvage C, Munos S et al (2013) A cytochrome 450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA 110:17125–17130

    Article  CAS  Google Scholar 

  • Cheng J, Qin C, Tang X, Zhou H, Hu Y et al (2016) Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci Rep 13:33293

    Article  Google Scholar 

  • Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A (2018) Quantitative trait loci controlling fruit size and other horticultural traits in bell pepper (Capsicum annuum). Plant Genome 11. https://doi.org/10.3835/plantgenome2016.12.0125

  • Cohen O, Borovsky Y, David-Schwartz R, Paran I (2012) CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. J Exp Bot 63:4947–4957

    Article  CAS  Google Scholar 

  • Cohen O, Borovsky Y, David-Schwartz R, Paran I (2014) Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum). New Phytol 202:1014–1023

    Article  CAS  Google Scholar 

  • Dwivedi N, Kumar R, Paliwal R, Kumar U, Kumar S et al (2015) QTL mapping for important horticultural traits in pepper (Capsicum annuum L.). J Plant Biochem Biotechnol 24:154–160

    Article  CAS  Google Scholar 

  • Eggink PM, Tikunov Y, Maliepaard C, Haanstra JP, De Rooij H et al (2014) Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theor Appl Genet 127:373–390

    Article  CAS  Google Scholar 

  • Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60:869–880

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knapp E et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  Google Scholar 

  • Han K, Jeong HJ, Yang HB, Kang SM, Kwon JK (2016) An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res 6:81–91

    Article  Google Scholar 

  • Hill T, Ashrafi H, Chin-Wo SR, Stoffel K, Truco MJ (2015) Ultra-high density, transcript-based genetic maps of pepper define recombination in the genome and synteny among related species. Gene Genet Genom 5:2341–2355

    CAS  Google Scholar 

  • Hill TA, Chunthawodtiporn J, Ashrafi H, Stoffel K, Weir A, Van Deynze A (2017) Regions underlying population structure and the genomics of organ size determination in Capsicum annuum. Plant Genome 10:3. https://doi.org/10.3835/plantgenome2017.03.0026

    Article  Google Scholar 

  • Huh JH, Kang BC, Nahm SH (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Hulse-Kemp AM, Ashrafi H, Plieske J, Lemm J, Stoffel K et al (2016) A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Hort Res 3:16036

    Article  Google Scholar 

  • Jeifetz D, David-Schwartz R, Borovsky Y, Paran I (2011) CaBLIND regulates axillary meristem initiation and transition to flowering in pepper. Planta 234:1227–1236

    Article  CAS  Google Scholar 

  • Kim S, Kim KT, Kim DH, Yang EY, Cho MC et al (2010) Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Korean J Hort Sci Technol 28:1014–1024

    CAS  Google Scholar 

  • Kim HJ, Han JH, Kim S, Lee HR, Shin JS et al (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058

    Article  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  Google Scholar 

  • Lee J, Hong JH, Do JW, Yoon JB (2010) Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. J Crop Sci Biotechnol 13:227–233

    Article  Google Scholar 

  • Lee HR, Kim KT, Kim HJ, Han JH, Kim JH (2011) QTL analysis of fruit length using rRAMP, WRKY, and AFLP markers in chili pepper. Hort Environ Biotechnol 52:602–613

    Article  CAS  Google Scholar 

  • Lee J, Park SJ, Hong SC, Han JH, Doil C, Yoon JB (2016) QTL mapping for capsaicin and dihydrocapsaicin content in a population of Capsicum annuum ‘NB1’ × Capsicum chinense ‘Bhut Jolokia’. Plant Breed 135:376–383

    Article  CAS  Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intraspecifc integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121

    Article  CAS  Google Scholar 

  • Lippman Z, Tanksley S-D (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small fruited wild species L. pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  Google Scholar 

  • Mahasuk P, Struss D, Mongkolporn O (2016) QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed 36:10. https://doi.org/10.1007/s11032-016-0435-5

    Article  CAS  Google Scholar 

  • Mimura Y, Minamiyama Y, Sano H (2010) Mapping for axillary shooting, flowering date, primary axis length, and number of leaves in pepper (Capsicum annuum). J Jpn Soc Hort Sci 79:56–63

    Article  CAS  Google Scholar 

  • Naegele RP, Ashraffi H, Hill TA, Chin-Wo SR, Van Deynze A, Hausbeck MK (2014) QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population. Phytopathology 104:479–483

    Article  CAS  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alparthi SB, Almeida A, Davenport B et al (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081. https://doi.org/10.1038/srep3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Bradley G, Pyke K, Ball G, Lu C et al (2013) Network inference analysis identifies an APRR2-Like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol 161:1476–1485

    Article  CAS  Google Scholar 

  • Paran I (2013) Molecular linkage maps of Capsicum. In: Kang BC, Kole C (eds) Genetics, genomics and breeding of peppers and eggplants. CRC Press, Boca Raton, FL, USA, pp 40–55

    Chapter  Google Scholar 

  • Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852

    Article  CAS  Google Scholar 

  • Paran I, Ben Chaim A, Kang BC, Jahn M (2006) Capsicum. In: Kole C (ed) Genome mapping and molecular breeding, vol 5. Vegetables. Springer, Heidelberg, Berlin, New York, Tokyo, pp 209–226

    Google Scholar 

  • Popovsky S, Paran I (2000) Molecular analysis of the Y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit color. Theor Appl Genet 101:86–89

    Article  CAS  Google Scholar 

  • Popovsky-Sarid S, Borovsky Y, Faigenboim A, Parsons EP, Lohrey GT et al (2017) Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum). Theor Appl Genet 130:445–459

    Article  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  Google Scholar 

  • Ramchiary N, Kehie M, Brahma V, Kumaria S, Tandon P (2014) Application of genetics and genomics towards Capsicm translational research. Plant Biotechnol Rep 8:101–123

    Article  Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky E, Paran I (2003) Mapping of yield related QTLs in pepper in an inter-specific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    Article  CAS  Google Scholar 

  • Stewart CJ, Kang BC, Liu K, Mazourek M, Moore SL et al (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  Google Scholar 

  • Tan S, Cheng JW, Zhang L, Qin C, Nong DG et al (2015) Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.). PLoS ONE 10:e0119389. https://doi.org/10.1371/journal.pone.0119389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    Article  CAS  Google Scholar 

  • Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS (2011) Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46

    Article  CAS  Google Scholar 

  • Wahyuni Y, Stahl-Hermes V, Ballester AR, de Vos RC, Voorrips RE (2014) Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): towards unravelling the molecular regulation of flavonoid quantitative trait loci. Mol Breed 33:503–518

    Article  CAS  Google Scholar 

  • Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A (2012) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56:61–74

    Article  Google Scholar 

  • Zhao X, Meng Z, Wang Y, Chen W, Sun C et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3:956–964

    Article  CAS  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Paran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, V., Paran, I. (2019). Molecular Mapping and Identification of QTLs and Genes for Economically Important Traits in the Capsicum Genome. In: Ramchiary, N., Kole, C. (eds) The Capsicum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97217-6_6

Download citation

Publish with us

Policies and ethics