Skip to main content

Pregnancy-Induced Uterine Vascular Remodelling and the Pathophysiology of Decidual Vasculopathy

  • Chapter
  • First Online:
Pathology of the Placenta
  • 2196 Accesses

Abstract

Maternal vasculopathy encompasses several related lesions, including incomplete physiologic remodelling, fibrinoid necrosis, and atherosis, that occur within the maternal blood vessels feeding the placenta. These lesions are thought to develop early in gestation, but their effects do not generally arise until the latter half of pregnancy. The alterations in the maternal vasculature change both the volume and flow characteristics of the blood entering the placenta, resulting in hypoxic/oxidative damage. Maternal vasculopathy is associated most closely with the hypertensive disorders of pregnancy but can also be found in several other adverse pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181:718–24.

    Article  CAS  Google Scholar 

  2. Roberts V, Morgan T, Bednarek P, Morita M, Burton G, Lo J, Frias A. Early first trimester uteroplacental blood flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum Reprod. 2017;32:2382–93.

    Article  CAS  Google Scholar 

  3. Pijnenborg R, Dixon H, Robertson W, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta. 1980;1:3–19.

    Article  CAS  Google Scholar 

  4. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep implantation. Am J Obstet Gynecol. 2011;204:193–201.

    Article  Google Scholar 

  5. Khong TY. Acute atherosis in pregnancies complicated by hypertension, small-for-gestational- age infants, and diabetes mellitus. Arch Pathol Lab Med. 1991;115:722–5.

    CAS  PubMed  Google Scholar 

  6. Arias F, Rodriquez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol. 1993;168:585–91.

    Article  CAS  Google Scholar 

  7. Brosens I, Robertson W, Dixon H. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    CAS  PubMed  Google Scholar 

  8. Manuck TA, Esplin MS, Biggio J, et al. The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol. 2015;487:e1–11.

    Google Scholar 

  9. Leavey K, Benton SJ, Grynspan D, Kingdom JC, Bainbridge SA, Cox BJ. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016;68:137–47.

    Article  CAS  Google Scholar 

  10. Esplin MS, Manuck TA, Varner MW, Christensen B, Biggio J, Bukowski R, et al. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms. Am J Obstet Gynecol. 2015;213:429.e1–9.

    Article  Google Scholar 

  11. Khong TY, Mooney EE, Ariel I, Balmus NC, et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group consensus statement. Arch Pathol Lab Med. 2016;140:698–713.

    Article  Google Scholar 

  12. Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 2005;46:725–31.

    Article  CAS  Google Scholar 

  13. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93:1049–59.

    Article  CAS  Google Scholar 

  14. Kos M, Czernobilsky B, Hlupic L, Kunjko K. Pathological changes in placentas from pregnancies with preeclampsia and eclampsia with emphasis on persistence of endovascular trophoblastic plugs. Croat Med J. 2005;46:404–9.

    PubMed  Google Scholar 

  15. Klebanoff MA. The collaborative perinatal project: a 50-year retrospective. Paediatr Perinat Epidemiol. 2009;20:727–32.

    Google Scholar 

  16. Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim J-S, et al. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med. 2015;28:1554–62.

    Article  Google Scholar 

  17. Meekins JW, Pijnenborg R, Hanssens M, McFayden IR, Van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. BJOG. 1994;101:660–74.

    Article  Google Scholar 

  18. Kim YM, Bujold E, Chaiworapongsa T, Gomex R, Yoon BH, Thaler HT, Rotmensch S, Romero R. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2003;189:1063–9.

    Article  Google Scholar 

  19. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–58.

    Article  CAS  Google Scholar 

  20. Starzyk KA, Salafia CM, Pezzullo JC, et al. Quantitative differences in arterial morphometry define the placental bed in preeclampsia. Hum Pathol. 1997;28:353–8.

    Article  CAS  Google Scholar 

  21. Ward K, Hata A, Jeunemaitre X, et al. A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet. 1993;4:59–61.

    Article  CAS  Google Scholar 

  22. Zhang G, Feenstra B, Bacelis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377:1156–67.

    Article  CAS  Google Scholar 

  23. Morgan T, Craven C, Lalouel JM, Ward K. Angiotensinogen Thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first-trimester decidua. Am J Obstet Gynecol. 1999;180:95–102.

    Article  CAS  Google Scholar 

  24. Morgan T, Craven C, Nelson L, et al. Angiotensinogen T235 expression is elevated in decidual spiral arteries. J Clin Invest. 1997;100:1406–15.

    Article  CAS  Google Scholar 

  25. Morgan T, Craven C, Ward K. Human spiral artery renin-angiotensin system. Hypertension. 1998;32:683–7.

    Article  CAS  Google Scholar 

  26. Kulandavelu S, Whiteley K, Qu D, et al. Endothelial nitric oxide synthase deficiency reduces uterine blood blow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60:231–8.

    Article  CAS  Google Scholar 

  27. Jauniaux E, Burton GJ. Pathophysiology of histological changes in early pregnancy loss. Placenta. 2005;26:114–23.

    Article  CAS  Google Scholar 

  28. Sebire NJ, Rees H, Paradina F, Fisher R, Foskett M, Seckl M, Newlands E. Extravillous endovascular implantation site trophoblast invasion is abnormal in complete versus partial molar pregnancies. Placenta. 2001;22:725–8.

    Article  CAS  Google Scholar 

  29. Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, Kroenke CD. Functional imaging of the nonhuman primate placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med. 2016;76:1551–62.

    Article  CAS  Google Scholar 

  30. Lo J, Roberts VH, Schabel MC, Wang X, Morgan TK, Liu Z, Studholme C, Kroenke CD, Frias AE. Novel detection of placental insufficiency by magnetic resonance imaging in the nonhuman primate. Reprod Sci. 2018;25:64–73.

    Article  Google Scholar 

  31. Rennie M, Whiteley K, Kulandavelu S, et al. 3D visualization and quantification by microcomputed tomography of late gestational changes in the arterial and venous feto-placental vasculature of the mouse. Placenta. 2007;28:833–40.

    Article  CAS  Google Scholar 

  32. Craven C, Morgan T, Ward K. Decidual spiral artery remodeling begins before cellular interaction with trophoblasts. Placenta. 1998;19:241–52.

    Article  CAS  Google Scholar 

  33. Kam EP, Gardner L, Loke YW, King [Moffett] A. The role of trophoblast in the physiological change in decidual spiral arteries. Hum Reprod. 1999;14:2131–8.

    Article  CAS  Google Scholar 

  34. Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124:1872–9.

    Article  CAS  Google Scholar 

  35. Brosens I, Robertson W, Dixon H. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967;93:569–79.

    Article  CAS  Google Scholar 

  36. Collins SL, Welsh AW, Impey L, Noble JA, Stevenson GN. 3D fractional moving blood volume (3D-FMBV) demonstrates decreased first trimester placental vascularity in pre-eclampsia but not the term, small for gestation age baby. PLoS One. 2017;12:e0178675.

    Article  Google Scholar 

  37. Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal microRNAs across gestation. J Clin Endocrinol Metab. 2017;102:3182–94.

    Article  Google Scholar 

  38. Roberts JM, Myatt L, Spong CY, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med. 2010;362:1282–91.

    Article  CAS  Google Scholar 

  39. Myatt L, Clifton RG, Roberts JM, et al. First-trimester prediction of preeclampsia in nulliparous women at low risk. Obstet Gynecol. 2012;119:1234–42.

    Article  Google Scholar 

  40. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    Article  CAS  Google Scholar 

  41. Mehta V, Ofir K, Swanson A, Kloczko E, Boyd M, Barker H, et al. Gene targeting to the uteroplacental circulation of pregnant Guinea pigs. Reprod Sci. 2016;23:1087–95.

    Article  CAS  Google Scholar 

  42. Hamilton WJ, Boyd JD. Development of the human placenta. J Anat. 1960;94:297–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Harris JWS, Ramsey EM. The morphology of human uteroplacental vasculature. Contrib Embryol Carnegie Inst Wash. 1966;38:43–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tony Parks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgan, T.K., Parks, W.T. (2019). Pregnancy-Induced Uterine Vascular Remodelling and the Pathophysiology of Decidual Vasculopathy. In: Khong, T., Mooney, E., Nikkels, P., Morgan, T., Gordijn, S. (eds) Pathology of the Placenta. Springer, Cham. https://doi.org/10.1007/978-3-319-97214-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97214-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97213-8

  • Online ISBN: 978-3-319-97214-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics