Advertisement

Impact of Nonlinear Effects and Mitigation on Coherent Optical Systems

  • Stenio M. RanziniEmail author
  • Victor E. Parahyba
  • José Hélio da C. Júnior
  • Fernando Guiomar
  • Andrea Carena
Chapter
  • 682 Downloads
Part of the Telecommunications and Information Technology book series (TIT)

Abstract

This chapter presents an overview of modeling and mitigation of nonlinear effects on coherent optical systems. The Gaussian Noise (GN) is presented as an efficient method to analyze the nonlinear propagation in an uncompensated link and used to estimate the system performance. In order to compensate for the nonlinear impairments, four digital techniques were investigated: Digital Back-Propagation (DBP), DBP with coupled equations, Volterra series, and Maximum Likelihood Sequence Estimator (MLSE). Different scenarios were used to validate the algorithms. Finally, a nonlinear estimation algorithm based on Steepest Descent Algorithm (SDA) is shown and experimentally validated in an unrepeatered optical system.

Keywords

Coherent Optical Systems Maximum Likelihood Sequence Estimator (MLSE) Nonlinear Impairments Volterra Series Coupling Equations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. Miquel Garrich Alabarce for reviewing a draft of this chapter.

References

  1. 1.
    Yu J, Zhang J, Jia Z, Li X, Chien HC, Cai Y, Li F, Wang Y, Xiao X (2015) Transmission of \(8\times 128.8\) Gbaud single-carrier PDM-QPSK signal over 2800-km EDFA-only SMF-28 link. In: European conference on optical communication (ECOC)Google Scholar
  2. 2.
    Chandrasekhar S, Liu X (2010) Terabit superchannels for high spectral efficiency transmission. In: European conference on optical communication (ECOC)Google Scholar
  3. 3.
    Sano A, Yamada E, Masuda H, Yamazaki E, Kobayashi T, Yoshida E, Miyamoto Y, Kudo R, Ishihara K, Takatori Y (2009) No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission. J Lightwave Technol 27(16):3705–3713CrossRefGoogle Scholar
  4. 4.
    Bosco G, Curri V, Carena A, Poggiolini P, Forghieri F (2011) On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. J Lightwave Technol 29(1):53–61CrossRefGoogle Scholar
  5. 5.
    Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S (2014) Experimental demonstration of 429.96-Gb/s OFDM/OQAM-64QAM over 400-km SSMF transmission within a 50-GHz grid. IEEE Photonics J 6(4):1–8Google Scholar
  6. 6.
    Maher R, Croussore K, Lauermann M, Going R, Xu X, Rahn J (2017) Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF. In: European conference on optical communication (ECOC)Google Scholar
  7. 7.
    Ip E, Kahn JM (2008) Compensation of dispersion and nonlinear impairments using digital backpropagation. J Lightwave Technol 26(20):3416–3425CrossRefGoogle Scholar
  8. 8.
    Guiomar FP, Amado SB, Reis JD, Rossi SM, Chiuchiarelli A, Oliveira JR, Teixeira AL, Pinto AN (2015) Ultra-long-haul 400G superchannel transmission with multi-carrier nonlinear equalization. In: European conference on optical communication (ECOC)Google Scholar
  9. 9.
    Parahyba VE, Rosa ES, Diniz JC, Ribeiro VB, Oliveira JC (2012) Nonlinear effects compensation analysis for dual polarization 16QAM optical coherent systems. In: Brazilian symposium on telecommunicationGoogle Scholar
  10. 10.
    Jiang L, Yan L, Chen Z, Yi A, Pan Y, Pan W, Luo B (2016) Low-complexity and adaptive nonlinearity estimation module based on Godard’s error. IEEE Photonics J 8Google Scholar
  11. 11.
    Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T et al (2014) GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links. IEEE Photonics Technol Lett 26(2):206–209CrossRefGoogle Scholar
  12. 12.
    Carena A, Curri V, Bosco G, Poggiolini P, Forghieri F (2012) Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links. J of Lightwave Technol 30(10):1524–1539CrossRefGoogle Scholar
  13. 13.
    Carena A, Bosco G, Curri V, Poggiolini P, Forghieri F (2013) Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: European conference on optical communication (ECOC)Google Scholar
  14. 14.
    Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T, Bauwelinck J, Verheyen K, Forghieri F (2013) Extensive fiber comparison and GN-model validation in uncompensated links using DAC-generated Nyquist-WDM PM-16QAM channels. In: Optical fiber communications conference and exhibition (OFC)Google Scholar
  15. 15.
    Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T, Bauwelinck J, Verheyen K, Forghieri F (2014) GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links. IEEE Photonics Technol Lett 26(2):206–209CrossRefGoogle Scholar
  16. 16.
    Stark AJ, Hsueh YT, Detwiler TF, Filer MM, Tibuleac S, Ralph SE (2013) System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks. J Lightwave Technol 31(21):3352–3360CrossRefGoogle Scholar
  17. 17.
    Carena A, Bosco G, Curri V, Jiang Y, Poggiolini P, Forghieri F (2014) EGN model of non-linear fiber propagation. Optics express 22(13):16,335–16,362CrossRefGoogle Scholar
  18. 18.
    Poggiolini P, Bosco G, Carena A, Curri V, Jiang Y, Forghieri F (2015) A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution. J Lightwave Technol 33(2):459–473CrossRefGoogle Scholar
  19. 19.
    Poggiolini P, Nespola A, Jiang Y, Bosco G, Carena A, Bertignono L, Bilal SM, Abrate S, Forghieri F (2016) Analytical and experimental results on system maximum reach increase through symbol rate optimization. J Lightwave Technol 34(8):1872–1885CrossRefGoogle Scholar
  20. 20.
    Carena A, Guiomar F (2017) On the accumulation of non-linear interference in multi-subcarrier systems. In: European conference on optical communication (ECOC)Google Scholar
  21. 21.
    Dar R, Feder M, Mecozzi A, Shtaif M (2013) Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt Express 21(22):25,685–25,699CrossRefGoogle Scholar
  22. 22.
    Jiang Y, Carena A, Poggiolini P, Forghieri F (2014) On the impact of non-linear phase-noise on the assessment of long-haul uncompensated coherent systems performance. In: European conference on optical communication (ECOC)Google Scholar
  23. 23.
    Agrawal GP (2007) Nonlinear fiber optics. Academic pressGoogle Scholar
  24. 24.
    Parahyba V, Reis J, Ranzini S, Schneider E, Rosa E, Simões F, Diniz J, Carvalho L, Oliveira J, Oliveira J et al (2015) Performance against implementation of digital backpropagation for high-speed coherent optical systems. Electron Lett 51(14):1094–1096CrossRefGoogle Scholar
  25. 25.
    Savory SJ (2008) Digital filters for coherent optical receivers. Opt Express 16(2):804–817CrossRefGoogle Scholar
  26. 26.
    Menyuk C (1999) Application of multiple-length-scale methods to the study of optical fiber transmission. J Eng Math 36(1–2):113–136MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mateo EF, Zhou X, Li G (2011) Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Opt Express 19(2):570–583CrossRefGoogle Scholar
  28. 28.
    Fontaine NK, Scott RP, Zhou L, Soares FM, Heritage J, Yoo S (2010) Real-time full-field arbitrary optical waveform measurement. Nature Photonics 4(4):248CrossRefGoogle Scholar
  29. 29.
    Rossi SM, Souza AL, Chiuchiarelli A, Rozental VN, Rosa ES, Lima TC, Piven T, Vincentini R, Oliveira JR, Reis JD (2016) \(20\times 448\) Gb/s 56-GBd PM-16QAM transmission with wideband and spectrally-sliced receivers. In: Optical Fiber Communications Conference and Exhibition (OFC)Google Scholar
  30. 30.
    Parahyba VE, Ranzini SM, Souza AL, Rozental VN, Rossi SM, Chiuchiarelli A, Oliveira JR, Reis JD (2016) Digital nonlinear compensation for spectrally sliced optical receivers with MIMO reconstruction. IEEE Photonics Technol Lett 28(22):2589–2592CrossRefGoogle Scholar
  31. 31.
    Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. WileyGoogle Scholar
  32. 32.
    Peddanarappagari KV, Brandt-Pearce M (1997) Volterra series transfer function of single-mode fibers. J Lightwave Technol 15(12):2232–2241CrossRefGoogle Scholar
  33. 33.
    Nazarathy M, Khurgin J, Weidenfeld R, Meiman Y, Cho P, Noe R, Shpantzer I, Karagodsky V (2008) Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Opt Express 16(20):15,777–15,810CrossRefGoogle Scholar
  34. 34.
    Xu B, Brandt-Pearce M (2003) Comparison of FWM- and XPM-induced crosstalk using the Volterra series transfer function method. J Lightwave Technol 21(1):40–53CrossRefGoogle Scholar
  35. 35.
    Reis JD, Teixeira AL (2010) Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series. Opt Express 18(8):8660–8670CrossRefGoogle Scholar
  36. 36.
    Reis JD, Neves DM, Teixeira AL (2012) Analysis of nonlinearities on coherent ultradense WDM-PONs using Volterra series. J Lightwave Technol 30(2):234–241CrossRefGoogle Scholar
  37. 37.
    Guiomar FP, Reis JD, Teixeira AL, Pinto AN (2011) Digital postcompensation using Volterra series transfer function. IEEE Photonics Technol Lett 23(19):1412–1414CrossRefGoogle Scholar
  38. 38.
    Guiomar FP, Reis JD, Teixeira AL, Pinto AN (2012) Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer. Opt Express 20(2):1360–1369CrossRefGoogle Scholar
  39. 39.
    Guiomar FP, Reis JD, Carena A, Bosco G, Teixeira AL, Pinto AN (2013) Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission. Opt Express 21(1):276–288CrossRefGoogle Scholar
  40. 40.
    Weidenfeld R, Nazarathy M, Noe R, Shpantzer I (2009) Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback. In: European conference on optical communication (ECOC)Google Scholar
  41. 41.
    Weidenfeld R, Nazarathy M, Noe R, Shpantzer I (2010) Volterra nonlinear compensation of 100G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation. In: Optical fiber communications conference and exhibition (OFC)Google Scholar
  42. 42.
    Liu L, Li L, Huang Y, Cui K, Xiong Q, Hauske FN, Xie C, Cai Y (2012) Intrachannel nonlinearity compensation by inverse Volterra series transfer function. J Lightwave Technol 30(3):310–316CrossRefGoogle Scholar
  43. 43.
    Shulkind G, Nazarathy M (2013) Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function. Opt Express 21(11):13,145–13,161CrossRefGoogle Scholar
  44. 44.
    Bakhshali A, Chan WY, Gao Y, Cartledge JC, O’Sullivan M, Laperle C, Borowiec A, Roberts K (2014) Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation. In: European conference on optical communication (ECOC)Google Scholar
  45. 45.
    Bakhshali A, Chan WY, Cartledge JC, OSullivan M, Laperle C, Borowiec A, Roberts K (2016) Frequency-domain volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities. J Lightwave Technol 34(8):1770–1777CrossRefGoogle Scholar
  46. 46.
    Guiomar FP, Pinto AN (2013) Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems. J Lightwave Technol 31(23):3879–3891CrossRefGoogle Scholar
  47. 47.
    Guiomar FP, Amado SB, Carena A, Bosco G, Nespola A, Teixeira AL, Pinto AN (2015a) Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems. J Lightwave Technol 33(7):1265–1274CrossRefGoogle Scholar
  48. 48.
    Guiomar FP, Amado SB, Martins CS, Pinto AN (2015b) Time domain Volterra-based digital backpropagation for coherent optical systems. J Lightwave Technol 33(15):3170–3181CrossRefGoogle Scholar
  49. 49.
    Amado SB, Guiomar FP, Muga NJ, Ferreira RM, Reis JD, Rossi SM, Chiuchiarelli A, Oliveira JRF, Teixeira AL, Pinto AN (2016) Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems. J Lightwave Technol 34(8):1793–1799CrossRefGoogle Scholar
  50. 50.
    Forney G (1972) Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans Inf Theory 18(3):363–378MathSciNetCrossRefGoogle Scholar
  51. 51.
    Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269CrossRefGoogle Scholar
  52. 52.
    Stojanovic N, Huang Y, Hauske FN, Fang Y, Chen M, Xie C, Xiong Q (2011) MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK transmissions with digital coherent receiver. In: Optical fiber communications conference and exhibition (OFC)Google Scholar
  53. 53.
    Alfiad MS, Van den Borne D, Hauske FN, Napoli A, Koonen A, de Waardt H (2009) Maximum-likelihood sequence estimation for optical phase-shift keyed modulation formats. J Lightwave Technol 27(20):4583–4594CrossRefGoogle Scholar
  54. 54.
    Oda S, Tanimura T, Hoshida T, Ohshima C, Nakashima H, Tao Z, Rasmussen JC (2009) 112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver. In: Optical fiber communications conference and exhibition (OFC)Google Scholar
  55. 55.
    Mussolin M, Rafique D, Mrtensson J, Forzati M, Fischer JK, Molle L, Nlle M, Schubert C, Ellis AD (2011) Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation. In: European conference on optical communication (ECOC)Google Scholar
  56. 56.
    Lin CY, Napoli A, Spinnler B, Sleiffer V, Rafique D, Kuschnerov M, Bohn M, Schmauss B (2014) Adaptive digital back-propagation for optical communication systems. In: Optical fiber communications conference and exhibition (OFC)Google Scholar
  57. 57.
    Chen Z, Yan L, Yi A, Jiang L, Pan YPW, Luo B (2015) Low complexity and adaptive nonlinearity compensation. In: Conference on lasers and electro-optics (CLEO)Google Scholar
  58. 58.
    Silva EP, Asif R, Larsen KJ, Zibar D (2015) Nonlinear compensation with modified adaptive digital backpropagation in flexigrid networks. In: Conference on lasers and electro-optics (CLEO)Google Scholar
  59. 59.
    Yao H, W L, Han J, He Z, Yuan Z, Hu Q, Yang Q, Yu S, (2016) A modified adaptive DBP for DP-16QAM coherent optical system. IEEE photonics technology letters 28:2511–2514Google Scholar
  60. 60.
    Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J (2012) Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonics Technol Lett 24:61–63CrossRefGoogle Scholar
  61. 61.
    Júnior JHC, Souza ALN, Januário JCSS, Rossi SM, Chiuchiarelli A, Reis JD (2017) Single-Carrier 400G unrepeatered WDM transmission using nonlinear compensation and DD-LMS with FEC feedback. In: International microwave and optoelectronics conference (IMOC)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stenio M. Ranzini
    • 1
    Email author
  • Victor E. Parahyba
    • 2
  • José Hélio da C. Júnior
    • 1
  • Fernando Guiomar
    • 3
  • Andrea Carena
    • 3
  1. 1.CPqDOptical Technologies DivisionCampinasBrazil
  2. 2.CEAGrenobleFrance
  3. 3.Politecnico di Torino, Optical Communication GroupTorinoItaly

Personalised recommendations