Advertisement

Coherent Optical Access Networks

  • Andrea Chiuchiarelli
  • Sandro M. RossiEmail author
Chapter
Part of the Telecommunications and Information Technology book series (TIT)

Abstract

The constant increase in IP traffic, mainly driven by the growth of the number of connected users and the demand for bandwidth per user, has profoundly influenced the evolution of optical communication systems as a whole, including fiber-based access networks, which constitute the last mile of an optical system, directly connecting the edge IP network to the end users. This chapter is devoted to coherent optical access networks. The main intent of the chapter is to analyze different fiber-access technologies, showing the benefits and the main limitations of each of them in assessing the needs for higher bandwidth and higher number of connected users together with the concerns of minimizing the impact on the network cost and complexity. It will be showed that coherent detection offers the highest potential in terms of network efficiency, with recent studies proving its feasibility for the access scenario also in terms of complexity and power consumption.

Keywords

Optical Network Terminal (ONT) Passive Optical Network (PON) Quadrature Phase Shift Keying (QPSK) Optical Network Units (ONU) Optical Line Terminal (OLT) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Fábio D. Simões for his useful insights and his help in reviewing this chapter.

This work was supported by Brazilian Ministry of Science, Technology, Innovation and Communications (MCTIC), FUNTTEL/FINEP.

References

  1. 1.
    Keiser G (2006) FTTx: Concepts and applications. WileyGoogle Scholar
  2. 2.
    Chochliouros IP, Heliotis GA (2009) Optical access networks and advanced photonics: technologies and deployment strategies. IGI GlobalGoogle Scholar
  3. 3.
    FSAN (1995) Full service access network. URL https://www.fsan.org
  4. 4.
    ITU-T (1993) Telecommunication standardization sector. URL https://www.itu.int/
  5. 5.
    IEEE (1963) Institute of Electrical and Electronics Engineers. URL https://www.ieee.org/
  6. 6.
    Faruque S (2015) Time Division Multiple Access (TDMA). In: Radio frequency source coding made easy. Springer Briefs in Electrical and Computer Engineering. Springer, ChamGoogle Scholar
  7. 7.
    Grobe K, Eiselt M (2013) Wavelength division multiplexing: a practical engineering guide. Wiley & SonsGoogle Scholar
  8. 8.
    Agrawal G (2013) Nonlinear fiber optics, 5th edn. ElsevierGoogle Scholar
  9. 9.
    ITU-T Recommendation G.983 (2001) Broadband optical access systems based on passive optical networks (PON). URL https://www.itu.int
  10. 10.
    IEEE Std 802.3ah (2004) Ethernet passive optical network. URL https://www.ieee.org
  11. 11.
    ITU-T Recommendation G.984 (2004) Gigabit-capable passive optical networks (GPON). URL https://www.itu.int
  12. 12.
    ITU-T Recommendation G.987 (2010) 10-Gigabit-capable passive optical network (XG-PON) systems. URL https://www.itu.int
  13. 13.
    ITU-T Recommendation G.989.2 (2015) 40-Gigabit-capable passive optical networks (NG-PON2). URL https://www.itu.int
  14. 14.
    Cisco (2017) Cisco visual networking index: forecast and methodology, 2016–2021, white paperGoogle Scholar
  15. 15.
    Healey P, Townsend P, Ford C, Johnston L, Townley P, Lealman I, Rivers L, Perrin S, Moore R (2001) Spectral slicing WDM-PON using wavelength-seeded reflective SOAs. IET Electron Lett 37(19):1181–1182CrossRefGoogle Scholar
  16. 16.
    Payoux F, Chanclou P, Moignard M, Brenot R (2005) Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA. In: 2005 European conference on optical communication (ECOC), p OTuG2Google Scholar
  17. 17.
    Kim JY, Yoo SH, Moon SR, Kim DC, Lee CH (2013) 400 Gb/s (40 x 10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM. In: 2013 optical fiber communication conference and the national fiber optic engineers conference, p OW4D.4Google Scholar
  18. 18.
    Xu Z, Wen YJ, Chae CJ, Wang Y, Lu C (2006) 10 Gb/s WDM-PON upstream transmission using injection-locked Fabry-Perot laser diodes. In: 2006 optical fiber communication conference and the national fiber optic engineers conference, p JThB72Google Scholar
  19. 19.
    Arellano C, Langer KD, Prat J (2009) Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks. IEEE/OSA J Lightwave Technol 27(1):12–18CrossRefGoogle Scholar
  20. 20.
    Urban P, Koonen A, Khoe G, de Waardt H (2008) Mitigation of reflection-induced crosstalk in a WDM access network. In: 2008 Optical fiber communication conference and the national fiber optic engineers conference, p OThT3Google Scholar
  21. 21.
    MacHale E, Talli G, Chow C, Townsend P (2007) Reduction of signal induced Rayleigh noise in a 10 Gb/s WDM-PON using a gain-saturated SOA. In: 2007 European conference on optical communication (ECOC), p We7.6.3Google Scholar
  22. 22.
    Marki C, Marki F, Esener S (2007) Reduction of interferometric optical crosstalk penalty via DC blocking. IET Electron Lett 43(11):644–646CrossRefGoogle Scholar
  23. 23.
    Chiuchiarelli A, Presi M, Proietti R, Contestabile G, Choudhury P, Giorgi L, Ciaramella E (2010) Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering. IEEE Photon Technol Lett 22(2):85–87CrossRefGoogle Scholar
  24. 24.
    Presi M, Ciaramella E (2011) Stable self-seeding of R-SOAs for WDM-PONs. In: 2011 optical fiber communication conference and exposition and the national fiber optic engineers conference, p OMP4Google Scholar
  25. 25.
    Presi M, Chiuchiarelli A, Ciaramella E (2012) Polarization independent self-seeding of Fabry-Perot laser diodes for WDM-PONs. In: 2012 optical fiber communication conference and exposition and the national fiber optic engineers conference, p OW1B.5Google Scholar
  26. 26.
    Chiuchiarelli A, Proietti R, Presi M, Choudhury P, Contestabile G, Ciaramella E (2009) Symmetric 10 Gbit/s WDM-PON based on cross-wavelength reuse to avoid Rayleigh backscattering and maximise band usage. IET Electron Lett 25(5):1343–1345CrossRefGoogle Scholar
  27. 27.
    Presi M, Chiuchiarelli A, Proietti R, Choudhury P, Contestabile G, Ciaramella E (2010) Single feeder bidirectional WDM-PON with enhanced resilience to Rayleigh-backscattering. In: 2010 optical fiber communication conference and the national fiber optic engineers conference, p OThG2Google Scholar
  28. 28.
    Cui W, Shao T, Yao J (2014) Wavelength reuse in a UWB over WDM-PON based on injection locking of a FabryProt laser siode and polarization multiplexing. IEEE/OSA J Lightwave Technol 32(2):220–227CrossRefGoogle Scholar
  29. 29.
    Xu M, Chi YC, Wang J, Cheng L, Lu F, Khalil MI, Tsai CT, Lin GR, Chang GK (2015) Wavelength sharing and reuse in dual-band WDM-PON systems employing WRC-FPLDs. IEEE Photon Technol Lett 27(17):1821–1824CrossRefGoogle Scholar
  30. 30.
    Choudhury PK, Khan TZ (2016) Symmetric 10 Gb/s wavelength reused bidirectional RSOA based WDM-PON with DPSK modulated downstream and OFDM modulated upstream signals. Opt Commun 372:180–184CrossRefGoogle Scholar
  31. 31.
    Lee W, Park MY, Cho SH, Lee J, Kim C, Jeong G, Kim BW (2005) Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photon Technol Lett 17(11):2460–2462CrossRefGoogle Scholar
  32. 32.
    Duarte UR, Penze RS, Pereira FR, Padela FF, Rosolem JB, Romero MA (2013) Combined self-seeding and carrier remodulation scheme for WDM-PON. IEEE/OSA J Lightwave Technol 31(8):1323–1330CrossRefGoogle Scholar
  33. 33.
    Presi M, Chiuchiarelli A, Proietti R, Choudhury P, Contestabile G, Ciaramella E (2010) Single feeder bidirectional WDM-PON with enhanced resilience to Rayleigh-backscattering. In: 2010 conference on optical fiber communication (OFC/NFOEC), collocated national fiber optic engineers conference, p OThG2Google Scholar
  34. 34.
    Derr F (1991) Optical QPSK transmission system with novel digital receiver concept. IET Electron Lett 27(23):2177–2179CrossRefGoogle Scholar
  35. 35.
    Norimatsu S, Iwashita K, Sato K (1990) PSK optical homodyne detection using external cavity laser diodes in Costas loop. IEEE Photon Technol Lett 2(5):374–376CrossRefGoogle Scholar
  36. 36.
    Okoshi T, Kikuchi K (1980) Frequency stabilisation of semiconductor lasers for heterodyne-type optical communication systems. IET Electron Lett 16(5):179–181CrossRefGoogle Scholar
  37. 37.
    Smolorz S, Gottwald E, Rohde H, Smith D, Poustie A (2011) Demonstration of a coherent UDWDM-PON with real-time processing. In: 2011 optical fiber communication conference and exposition and the national fiber optic engineers conference, p PDPD4Google Scholar
  38. 38.
    Presi M, Cossu G, Corsini R, Bottoni F, Ciaramella E (2013) A 1.25 Gb/s low-cost coherent PON. In: ECOC 2013; 39th European conference and exhibition on optical communication, p We.3.F.5Google Scholar
  39. 39.
    Shahpari A, Luis RS, Reis JD, Ferreira RM, Vujicic Z, Mendinueta JD, Lima M, Wada N, Teixeira AL (2014) Fully coherent self-homodyne bi-directional enhanced performance PON. In: 2014 optical fiber communication conference and exhibition (OFC). Optical Society of America, p W4G.1Google Scholar
  40. 40.
    Bottoni F, Rannello M, Artiglia M, Presi M, Ciaramella E (2015) Coherent PON system with high-sensitivity polarization-independent receiver and no ADC/DSP. In: 2015 European conference on optical communication (ECOC), p Th.1.3.2Google Scholar
  41. 41.
    Shahpari A, Ferreira RM, Guiomar FP, Amado SB, Ziaie S, Rodrigues C, Reis JD, Pinto AN, Teixeira AL (2016) Real-time bidirectional coherent Nyquist UDWDM-PON coexisting with multiple deployed systems in field-trial. IEEE/OSA J Lightwave Technol 34(7):1643–1650Google Scholar
  42. 42.
    Cano IN, Prat J, Tabares J, Velasquez JC, Ghasemi S, Polo V, Chu GY, Presi M, Ciaramella E, Rannello M, Bottoni F, Artiglia M, Cossu G, Pous R, Azcarate G, Vila C, Debregeas H, Vall-llosera G, Rafel A (2016) Field-trial of low-cost coherent UDWDM-PON with real-time processing, monitoring and EPON coexistence. In: 42nd European conference on optical communication ECOC 2016, p M.1.E.5Google Scholar
  43. 43.
    Ferreira RM, Shahpari A, Reis JD, Teixeira AL (2017) Coherent UDWDM-PON with dual-polarization transceivers in real-time. IEEE Photon Technol Lett 29(11):909–912Google Scholar
  44. 44.
    Schmogrow R, Ben-Ezra S, Schindler PC, Nebendahl B, Koos C, Freude W, Leuthold J (2013) Pulse-shaping with digital, electrical, and optical filters–a comparison. IEEE/OSA J Lightwave Technol 31(15):2570–2577CrossRefGoogle Scholar
  45. 45.
    Reis JD, Shahpari A, Ferreira R, Neves DM, Lima M, Teixeira AL (2014) Nyquist signaling for spectrally-efficient optical access networks. In: 2014 optical fiber communication conference and exhibition (OFC), p W3G.3Google Scholar
  46. 46.
    Rohde H, Gottwald E, Teixeira A, Reis JD, Shahpari A, Pulverer K, Wey JS (2014) Coherent ultra dense WDM technology for next generation optical metro and access networks. IEEE/OSA J Lightwave Technol 32(10):2041–2052CrossRefGoogle Scholar
  47. 47.
    Hu R, Yang Q, Luo M, Xiao X, Xiao X, Li H, Shieh W (2014) A cost-effective 2.5 Gb/s/ bi-directional coherent UDWDM-PON with computationally-efficient DSP. In: 2014 European conference on optical communication (ECOC), p Th.2.6.4Google Scholar
  48. 48.
    Reis JD, Ferreira RM, Rossi SM, Suzigan GJ, Pinto TMS, Shahpari A, Teixeira AL, Gonzalez NG, Oliveira JRF (2015) Bidirectional coherent WDM-PON performance with real-time Nyquist 16QAM transmitter. In: 2015 optical fiber communication conference and exhibition (OFC), p Th3I.5Google Scholar
  49. 49.
    Ferreira R, Reis JD, Rossi SM, Amado SB, Shahpari A, Gonzalez NG, Oliveira JR, Pinto AN, Teixeira AL (2015) Demonstration of Nyquist UDWDM-PON with digital signal processing in real-time. In: 2015 optical fiber communication conference and exhibition (OFC). Optical Society of America, p Th3I.4Google Scholar
  50. 50.
    Ferreira RM, Reis JD, Rossi SM, Amado SB, Guiomar FP, Shahpari A, Oliveira JRF, Pinto AN, Teixeira AL (2016) Coherent Nyquist UDWDM-PON with digital signal processing in real time. IEEE/OSA J Lightwave Technol 34(2):826–833Google Scholar
  51. 51.
    Ferreira RM, Shahpari A, Amado SB, Costa P, Guiomar FP, Pinto AN, Teixeira AL (2014) Impact of TWDM on optional real-time QPSK WDM channels. In: 2014 European conference on optical communication (ECOC), p P.7.19Google Scholar
  52. 52.
    Yan M, Tao Z, Dou L, Li L, Zhao Y, Hoshida T, Rasmussen JC (2013) Digital clock recovery algorithm for Nyquist signal. In: 2013 optical fiber communication conference/national fiber optic engineers conference, p OTu2I.7Google Scholar
  53. 53.
    Savory SJ (2010) Digital coherent optical receivers: algorithms and subsystems. IEEE J Sel Topics Quantum Electron 16(5):1164–1179CrossRefGoogle Scholar
  54. 54.
    Ip E, Lau APT, Barros DJF, Kahn JM (2008) Coherent detection in optical fiber systems. Opt Express 16(2):753–791CrossRefGoogle Scholar
  55. 55.
    Essiambre RJ, Kramer G, Winzer PJ, Foschini GJ, Goebel B (2010) Capacity limits of optical fiber networks. IEEE/OSA J Lightwave Technol 28(4):662–701CrossRefGoogle Scholar
  56. 56.
    Curri V, Poggiolini P, Carena A, Forghieri F (2008) Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems. IEEE Photon Technol Lett 20(17):1473–1475CrossRefGoogle Scholar
  57. 57.
    Reis JD, Neves DM, Teixeira AL (2012) Analysis of nonlinearities on coherent ultradense WDM-PONs using Volterra series. IEEE/OSA J Lightwave Technol 30(2):234–241CrossRefGoogle Scholar
  58. 58.
    Reis JD, Shahpari A, Ferreira R, Ziaie S, Neves DM, Lima M, Teixeira AL (2014) Terabit+ (192 x 10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band. IEEE/OSA. J Lightwave Technol 32(4):729–735Google Scholar
  59. 59.
    Reis JD, Rossi SM, Chiuchiarelli A, Ferreira RM, Parahyba VE, Shahpari A, Teixeira AL, Oliveira JRF (2015) Experimental demonstration of interchannel FWM mitigation on coherent bidirectional UDWDM networks. In: 2015 European conference on optical communication (ECOC), p Th1.3.5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Optical Technologies DivisionCPqDCampinas-SPBrazil

Personalised recommendations