Skip to main content

Beyond Frames: Semi-frames and Reproducing Pairs

  • Chapter
  • First Online:
Mathematical Structures and Applications

Abstract

Frames are nowadays a standard tool in many areas of mathematics, physics, and engineering. However, there are situations where it is difficult, even impossible, to design an appropriate frame. Thus there is room for generalizations, obtained by relaxing the constraints. A first case is that of semi-frames, in which one frame bound only is satisfied. Accordingly, one has to distinguish between upper and lower semi-frames. We will summarize this construction. Even more, one may get rid of both bounds, but then one needs two basic functions and one is led to the notion of reproducing pair. It turns out that every reproducing pair generates two Hilbert spaces, conjugate dual of each other. We will discuss in detail their construction and provide a number of examples, both discrete and continuous. Next, we notice that, by their very definition, the natural environment of a reproducing pair is a partial inner product space (pip-space) with an L 2 central Hilbert space. A first possibility is to work in a rigged Hilbert space. Then, after describing the general construction, we will discuss two characteristic examples, namely, we take for the partial inner product space a Hilbert scale or a lattice of L p spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As usual, we identify a function f with its residue class in L 2(X, dμ).

References

  1. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Square integrability of group representations on homogeneous spaces I. Reproducing triples and frames. Ann. Inst. H. Poincaré 55, 829–856 (1991)

    MATH  Google Scholar 

  2. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Continuous frames in Hilbert space. Ann. Phys. 222, 1–37 (1993)

    Article  MathSciNet  Google Scholar 

  3. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations, 2nd edn. (Springer, New York, 2014)

    Book  Google Scholar 

  4. J.-P. Antoine, P. Balazs, Frames and semi-frames. J. Phys. A: Math. Theor. 44, 205201 (2011); Corrigendum, ibid. 44, 479501 (2011)

    Article  MathSciNet  Google Scholar 

  5. J.-P. Antoine, P. Balazs, Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 33, 736–769 (2012)

    Article  MathSciNet  Google Scholar 

  6. J.-P. Antoine, C. Trapani, Partial Inner Product Spaces: Theory and Applications. Lecture Notes in Mathematics, vol. 1986 (Springer, Berlin, 2009)

    Google Scholar 

  7. J.-P. Antoine, C. Trapani, The partial inner product space method: a quick overview. Adv. Math. Phys. 2010, 457635 (2010); Erratum, ibid. 2011, 272703 (2010)

    Google Scholar 

  8. J.-P. Antoine, C. Trapani, Operators on partial inner product spaces: towards a spectral analysis. Mediterr. J. Math. 13, 323–351 (2016)

    Article  MathSciNet  Google Scholar 

  9. J.-P. Antoine, C. Trapani, Reproducing pairs of measurable functions and partial inner product spaces. Adv. Oper. Theory 2, 126–146 (2017)

    MathSciNet  MATH  Google Scholar 

  10. J.-P. Antoine, P. Vandergheynst, Wavelets on the 2-sphere: a group theoretical approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999)

    Article  MathSciNet  Google Scholar 

  11. J.-P. Antoine, A. Inoue, C. Trapani, Partial *-Algebras and Their Operator Realizations. Mathematics and Its Applications, vol. 553 (Kluwer, Dordrecht, 2002)

    Chapter  Google Scholar 

  12. J.-P. Antoine, M. Speckbacher, C. Trapani, Reproducing pairs of measurable functions. Acta Appl. Math. 150, 81–101 (2017)

    Article  MathSciNet  Google Scholar 

  13. A. Askari-Hemmat, M.A. Dehghan, M. Radjabalipour, Generalized frames and their redundancy. Proc. Am. Math. Soc. 129, 1143–1147 (2001)

    Article  MathSciNet  Google Scholar 

  14. P.G. Casazza, The art of frame theory. Taiwan. J. Math. 4, 129–202 (2000)

    Article  MathSciNet  Google Scholar 

  15. P. Casazza, O. Christensen, S. Li, A. Lindner, Riesz-Fischer sequences and lower frame bounds. Z. Anal. Anwend. 21, 305–314 (2002)

    Article  MathSciNet  Google Scholar 

  16. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Boston, 2003)

    Book  Google Scholar 

  17. I. Daubechies, Ten Lectures On Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, 1992)

    Google Scholar 

  18. I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  Google Scholar 

  19. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  20. M. Fornasier, Banach frames for α-modulation spaces. Appl. Comput. Harmon. Anal. 22, 157–175 (2007)

    Article  MathSciNet  Google Scholar 

  21. M. Fornasier, H. Rauhut, Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11, 245–287 (2005)

    Article  MathSciNet  Google Scholar 

  22. J.-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18, 127–147 (2003)

    Article  MathSciNet  Google Scholar 

  23. G.G. Gould, On a class of integration spaces. J. Lond. Math. Soc. 34, 161–172 (1959)

    Article  MathSciNet  Google Scholar 

  24. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)

    Book  Google Scholar 

  25. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994)

    MATH  Google Scholar 

  26. R.E. Megginson, An Introduction to Banach Space Theory (Springer, New York-Heidelberg-Berlin, 1998)

    Book  Google Scholar 

  27. A. Rahimi, A. Najati, Y.N. Dehghan, Continuous frames in Hilbert spaces. Methods Funct. Anal. Topol. 12, 170–182 (2006)

    MathSciNet  MATH  Google Scholar 

  28. W. Rudin, Real and Complex Analysis, Int. edn. (McGraw Hill, New York, 1987); p.73, from Ex.18

    Google Scholar 

  29. H.H. Schaefer, Topological Vector Spaces (Springer, New York-Heidelberg-Berlin, 1971)

    Book  Google Scholar 

  30. M. Speckbacher, P. Balazs, Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. J. Phys. A: Math. Theor. 48, 395201 (2015)

    Article  MathSciNet  Google Scholar 

  31. M. Speckbacher, D. Bayer, S. Dahlke, P. Balazs, The α-modulation transform: admissibility, coorbit theory and frames of compactly supported functions. Monatsh. Math. 184, 133–169 (2017)

    Article  MathSciNet  Google Scholar 

  32. B. Torrésani, Wavelets associated with representations of the Weyl-Heisenberg group. J. Math. Phys. 32, 1273–1279 (1991)

    Article  MathSciNet  Google Scholar 

  33. Y. Wiaux, L. Jacques, P. Vandergheynst, Correspondence principle between spherical and Euclidean wavelets. Astrophys. J. 632, 15–28 (2005)

    Article  Google Scholar 

  34. R.M. Young, An Introduction to Nonharmonic Fourier Series, Rev. 1st edn. (Academic Press, San Diego, 2001)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Istituto Nazionale di Alta Matematica (GNAMPA project “Proprietà spettrali di quasi *-algebre di operatori”). JPA acknowledges gratefully the hospitality of the Dipartimento di Matematica e Informatica, Università di Palermo, whereas CT acknowledges that of the Institut de Recherche en Mathématique et Physique, Université catholique de Louvain. We also thank Michael Speckbacher for supplying the new proof of Proposition 2.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Antoine .

Editor information

Editors and Affiliations

Appendix: Lattices of Banach or Hilbert Spaces

Appendix: Lattices of Banach or Hilbert Spaces

For the convenience of the reader, we summarize in this Appendix the basic facts concerning pip-spaces and operators on them. However, we will restrict the discussion to the simpler case of a lattice of Banach (LBS) or Hilbert spaces (LHS). Further information may be found in our monograph [6] or our review paper [7].

Let thus \({\mathcal J} = \{ V_p,\, p \in I \}\) be a family of Hilbert spaces or reflexive Banach spaces, partially ordered by inclusion. Then \({\mathcal I}\) generates an involutive lattice \({\mathcal J}\), indexed by J, through the operations (p, q, r ∈ I):

  • involution:  V r\(V_{\overline {r}}= V_r ^\times \), the conjugate dual of V r

  • infimum:  V pq :=  V p ∧ V q = V p ∩ V q

  • supremum:  V pq :=  V p ∨ V q = V p + V q.

It turns out that both V pq and V pq are Hilbert spaces, resp. reflexive Banach spaces, under appropriate norms (the so-called projective, resp. inductive norms). Assume that the following conditions are satisfied:

  1. (1)

    \({\mathcal I}\) contains a unique self-dual, Hilbert subspace \(V_{o} =V_{\overline {o}}\).

  2. (2)

    for every \(V_r\in {\mathcal I}\), the norm \(\|\cdot \|{ }_{\overline {r}}\) on \(V_{\overline {r}}=V_{r}^\times \) is the conjugate of the norm ∥⋅∥r on V r.

In addition to the family \({\mathcal J} =\{V_{r}, \,r\in J\}\), it is convenient to consider the two spaces V # and V  defined as

$$\displaystyle \begin{aligned} V = \sum_{q\in I}V_{q}, \quad V^{\#} = \bigcap_{q\in I}V_{q}. {} \end{aligned} $$
(A.1)

These two spaces themselves usually do not belong to \({\mathcal I}\). According to the general theory of pip-spaces [6], V  is the algebraic inductive limit of the V p’s, and V # is the projective limit of the V p’s.

We say that two vectors f, g ∈ V  are compatible if there exists \(r \in J \mbox{ such that } f \in V_{r}, g \in V_{\overline {r}}\) . Then a partial inner product on V  is a Hermitian form 〈⋅|⋅〉 defined exactly on compatible pairs of vectors. In particular, the partial inner product 〈⋅|⋅〉 coincides with the inner product of V o on the latter. A partial inner product space (pip-space) is a vector space V  equipped with a partial inner product. Clearly LBSs and LHSs are particular cases of pip-spaces.

We will assume that our pip-space (V, 〈⋅|⋅〉) is nondegenerate, that is, 〈f|g〉 = 0 for all f ∈ V # implies g = 0. As a consequence, (V #, V ) and every couple \((V_r , V_{\overline r} ), \, r\in J, \) are a dual pair in the sense of topological vector spaces [29]. In particular, the original norm topology on V r coincides with its Mackey topology \(\tau (V_{r},V_{\overline {r}})\), so that indeed its conjugate dual is \((V_r)^\times = V_{\overline {r}}, \; \forall \, r\in J \). Then, r < s implies V r ⊂ V s, and the embedding operator E sr : V r → V s is continuous and has dense range. In particular, V # is dense in every V r. In the sequel, we also assume the partial inner product to be positive definite, 〈f|f〉 > 0 whenever f ≠ 0.

Then we have the familiar (Schwarz) inequality

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} \xi \in V_p, \;\eta \in V_{\overline p}\quad \mathrm{implies} \quad \xi\overline{\eta} \in L^1 (X, \mu)\quad \mathrm{and} \\ \quad \left| \int_X \xi(x) \overline{\eta (x)} \,\mathrm{d}\mu (x)\right| {\leqslant} \|\xi\|{}_p \, \|\eta\|{}_{\overline p}. \end{array} \end{aligned} $$
(A.2)

A standard, albeit trivial, example is that of a rigged Hilbert space (RHS) \(\Phi \subset {{\mathcal H}} \subset \Phi ^{\#}\) (it is trivial because the lattice \({\mathcal I}\) contains only three elements).

Familiar concrete examples of pip-spaces are sequence spaces, with V = ω the space of all complex sequences x = (x n), and spaces of locally integrable functions with \(V =L^1_{\mathrm {loc}}(\mathbb {R}, \,\mathrm {d} x)\), the space of Lebesgue measurable functions, integrable over compact subsets.

Among LBSs, the simplest example is that of a chain of reflexive Banach spaces. The prototype is the chain \( {\mathcal I} = \{L^p := L ^p ( [0,1 ];dx),\; 1 < p < \infty \} \) of Lebesgue spaces over the interval [0, 1].

$$\displaystyle \begin{aligned} L^{\infty}\;\subset \;\ldots\;\subset \; L^{\overline{q}}\;\subset\; L^{\overline{r}}\;\subset \; \ldots \; {\subset \;L^{2}\;\subset} \; \ldots \subset \; L^{r} \subset \; L^{q} \;\subset \;\ldots\;\subset \;L^{1} , \end{aligned} $$
(A.3)

where 1 < q < r < 2 (of course, L and L 1 are not reflexive). Here L q and \( L^{\overline {q}}\) are dual to each other \((1/q + 1/\overline { q} = 1)\), and similarly \(L^{r}, L^{\overline {r}}\; (1/r + 1/\overline {r} = 1)\).

As for an LHS, the simplest example is the Hilbert scale generated by a self-adjoint operator A > I in a Hilbert space \({{\mathcal H}}_o\). Let \({{\mathcal H}}_{n}\) be D(A n), the domain of A n, equipped with the graph norm ∥fn = ∥A n f∥, f ∈ D(A n), for \( n \in \mathbb {N}\) or \(n\in \mathbb {R}^+\), and \({{\mathcal H}}_{\overline n}:= {{\mathcal H}}_{-n} ={{\mathcal H}}_{n}^{\times }\) (conjugate dual):

$$\displaystyle \begin{aligned} {\mathcal D}^{\infty}(A):=\bigcap_{n} {{\mathcal H}}_n \subset \ldots \subset {{\mathcal H}}_2 \subset {{\mathcal H}}_1 \subset {{\mathcal H}}_0 \ \subset {{\mathcal H}}_{\overline 1} \subset {{\mathcal H}}_{ \overline 2} \ldots \subset {\mathcal D}_{\overline \infty}(A):=\bigcup_{n} {{\mathcal H}}_{n}. \end{aligned} $$
(A.4)

Note that here the index n may be integer or real, the link between the two cases being established by the spectral theorem for self-adjoint operators. Here again the inner product of \({{\mathcal H}}_0\) extends to each pair \({{\mathcal H}}_n ,{{\mathcal H}}_{-n}\), but on \({\mathcal D}_{\overline \infty }(A)\) it yields only a partial inner product. A standard example is the scale of Sobolev spaces \(H^s(\mathbb {R}), \, s\in \mathbb {Z}\), in \({{\mathcal H}}_0 = L^2(\mathbb {R}, dx)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antoine, JP., Trapani, C. (2018). Beyond Frames: Semi-frames and Reproducing Pairs. In: Diagana, T., Toni, B. (eds) Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-97175-9_2

Download citation

Publish with us

Policies and ethics