Skip to main content

Shape Invariant Potential Formalism for Photon-Added Coherent State Construction

  • Chapter
  • First Online:
Mathematical Structures and Applications

Abstract

An algebro-operator approach, called shape invariant potential method, of constructing generalized coherent states for photon-added particle system is presented. Illustration is given on Pöschl–Teller potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev A. 43, 492 (1991); G.S. Agarwal, K. Tara, Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A 46, 485 (1992)

    Google Scholar 

  2. A.N.F. Aleixo, A.B. Balantekin, An algebraic construction of generalized coherent states for shape-invariant potentials. J. Phys. A Math. Gen. 37, 8513 (2004)

    Article  MathSciNet  Google Scholar 

  3. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets, and Their Generalizations. Theoretical and Mathematical Physics, 2nd edn. (Springer, New York, 2014)

    Book  Google Scholar 

  4. J.-P. Antoine, J.-P. Gazeau, P.M. Monceau, J.R. Klauder, K.A. Penson, Temporally stable coherent states for infinite well and Pöschl-Teller potentials. J. Math. Phys. 42, 2349 (2001)

    Article  MathSciNet  Google Scholar 

  5. I. Aremua, J.-P. Gazeau, M.N. Hounkonnou, Action-angle coherent states for quantum systems with cylindric phase space, J. Phys. A Math. Gen. 45, 335302 (2012)

    Article  MathSciNet  Google Scholar 

  6. I. Aremua, M.N. Hounkonnou, E. Baloïtcha, Coherent states for Landau Levels: algebraic and thermodynamical properties. Rep. Math. Phys. 45(2), 247 (2015)

    Article  MathSciNet  Google Scholar 

  7. A.B. Balantekin, Algebraic approach to shape invariance. Phys. Rev. A 57(6), 4188 (1998); A.B. Balantekin, M.A. Cândido Ribeiro, A.N.F. Aleixo, Algebraic nature of shape-invariant and self-similar potentials. J. Phys. A Math. Gen. 32, 2785 (1999); E.D. Filho, M.A. Cândido Ribeiro, Generalized ladder operators for shape-invariant potentials. Phys. Scr. 64(6), 548 (2001)

    Google Scholar 

  8. M. Ban, Photon statistics of conditional output states of lossless beam splitter. J. Mod. Opt. 43, 1281 (1996)

    Article  Google Scholar 

  9. H. Bergeron, P. Siegl, A. Youssef, New SUSYQM coherent states for Pöschl-Teller potentials: a detailed mathematical analysis. J. Phys. A Math. Theor. 45, 244028 (2012)

    Article  Google Scholar 

  10. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)

    Article  MathSciNet  Google Scholar 

  11. J.W. Dabrowska, A. Khare, U.P. Sukhatme, Explicit wavefunctions for shape-invariant potentials by operator techniques. J. Phys. A Math. Gen. 21, L195 (1988)

    Article  MathSciNet  Google Scholar 

  12. M. Dakna, T. Anhut, T. Opatrny, L. Knöll, D.-G.Welsch, Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A. 55, 3184 (1997); M. Dakna, L. Knöll, D.-G. Welsch, Photon-added state preparation via conditional measurement on abeam splitter. Opt. Commun. 145, 309 (1998)

    Article  Google Scholar 

  13. C. Daskaloyannis, Generalized deformed oscillator corresponding to the modified Pöschl-Teller energy-spectrum. J. Phys. A Math. Gen. 25, 2261 (1992)

    Article  MathSciNet  Google Scholar 

  14. R. Dutt, A. Khare, U.P. Sukhatme, Exactness of supersymmetric WKB spectrum for shape invariant potentials. Phys. Lett. B 181, 295 (1986)

    Article  Google Scholar 

  15. A.H. El Kinani, M. Daoud, Coherent states à la Klauder-Perelomov for the Pösch-Teller potentials. Phys. Lett. A 283, 291 (2001); M. Daoud, Photon-added coherent states for exactly solvable Hamiltonians. Phys. Lett. A 305, 135 (2002)

    Article  MathSciNet  Google Scholar 

  16. T. Fukui, N. Aizawa, Shape-invariant potentials and associated coherent states. Phys. Lett. A 180, 308 (1993)

    Article  MathSciNet  Google Scholar 

  17. L.E. Gendenshtein, Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. JETP Lett. 38, 356 (1983)

    Google Scholar 

  18. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963); R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Google Scholar 

  19. M.N. Hounkonnou, K. Sodoga, Generalized coherent states for associated hypergeometric-type functions, J. Phys. A Math. Gen. 38, 7851 (2005)

    Article  MathSciNet  Google Scholar 

  20. M.N. Hounkonnou, K. Sodoga, E. Azatassou, Factorization of Sturm-Liouville operators: solvable potentials and underlying algebraic structure, J. Phys. A Math. Gen. 38, 371 (2005)

    Article  MathSciNet  Google Scholar 

  21. M.N. Hounkonnou, E.B. Ngompe Nkouankam, On (p, q, μ, ν, ϕ 1, ϕ 2)-generalized oscillator algebra and related bibasic hypergeometric functions. J. Phys. A Math. Theor. 40, 8835 (2007); M.N. Hounkonnou, E.B. Ngompe Nkouankam, New (p, q; μ, ν, f)-deformed states. J. Phys. A Math. Theor. 40, 12113 (2007); M.N. Hounkonnou, E.B. Ngompe Nkouankam, (q, ν)-deformation of generalized basic hypergeometric states. J. Phys. A Math. Theor. 42, 065202 (2008)

    Google Scholar 

  22. M.N. Hounkonnou, E.B. Ngompe Nkouankam, Generalized hypergeometric photon-added and photon-depleted coherent states. J. Phys. A Math. Theor. 42, 025206 (2009)

    Article  MathSciNet  Google Scholar 

  23. M.N. Hounkonnou, S. Arjika, E. Baloïtcha, Pöschl-Teller Hamiltonian: Gazeau-Klauder type coherent states, related statistics, and geometry. J. Math. Phys. 55, 123502 (2014)

    Article  MathSciNet  Google Scholar 

  24. L. Infeld, T.E. Hull, The factorization method. Rev. Mod. Phys. 23, 28 (1951)

    Article  MathSciNet  Google Scholar 

  25. A. Khare, U.P. Sukhatme, New shape invariant potentials in supersymmetry quantum mechanics. J. Phys. A Math. Gen. 26, L901 (1991)

    Article  Google Scholar 

  26. J.R. Klauder, K.A. Penson, J.-M. Sixdeniers, Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems. Phys. Rev. A 64, 013817 (2001)

    Article  Google Scholar 

  27. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  28. A.M. Mathai, R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lecture Notes in Mathematics, vol. 348 (Springer, Berlin, 1973)

    Book  Google Scholar 

  29. K.A. Penson, A.I. Solomon, New generalized coherent states. J. Math. Phys. 40, 2354 (1999)

    Article  MathSciNet  Google Scholar 

  30. A.M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    Book  Google Scholar 

  31. D. Popov, Photon-added Barur-Girardello coherent states of the pseudoharmonic oscillator. J. Phys. A Math. Gen. 35, 7205 (2002)

    Article  Google Scholar 

  32. D. Popov, I. Zaharie, S.H. Dong, Photon-added coherent states for the Morse oscillator. Czech. J. Phys. 56, 157 (2006); D. Popov, Some properties of generalized hypergeometric thermal coherent states. Electron. J. Theor. Phys. 3(11), 123 (2006)

    Article  MathSciNet  Google Scholar 

  33. G. Pöschl, E. Teller, Bemerkungen zur Quantenmechanik des Anharmonischen Oszillators. Z. Phys. 83, 143 (1933)

    Article  Google Scholar 

  34. N. Rosen, P.M. Morse, On the vibrations of polyatomic molecules. Phys. Rev. 42, 210 (1932)

    Article  Google Scholar 

  35. F.L. Scarf, New soluble energy band problem. Phys. Rev. 112, 1137 (1958)

    Article  MathSciNet  Google Scholar 

  36. E. Schrödinger, The continuous transition from micro- to macro-mechanics. Naturwiss 14, 664 (1926)

    Article  Google Scholar 

  37. J.-M. Sixdeniers, K.A. Penson, On the completeness of photon-added coherent states. J. Phys. A. Math. Gen 34, 2859 (2001)

    Article  MathSciNet  Google Scholar 

  38. K. Sodoga, M.N. Hounkonnou, I. Aremua, Photon-added coherent states for shape invariant systems. Eur. Phys. J. D 72, 105 (2018)

    Article  Google Scholar 

  39. G. Teschl, Mathematical Methods in Quantum Mechanics: With Application to Schrödinger Operators. Graduate Studies in Mathematics, vol. 157, 2nd edn. (American Mathematical Society, Providence, RI, 1999)

    Google Scholar 

Download references

Acknowledgements

This work is supported by TWAS Research Grant RGA No. 17-542 RG/MATHS/AF/AC_G -FR3240300147. The ICMPA-UNESCO Chair is in partnership with the Association pour la Promotion Scientifique de l’Afrique (APSA), France, and Daniel Iagolnitzer Foundation (DIF), France, supporting the development of mathematical physics in Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komi Sodoga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sodoga, K., Aremua, I., Hounkonnou, M.N. (2018). Shape Invariant Potential Formalism for Photon-Added Coherent State Construction. In: Diagana, T., Toni, B. (eds) Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-97175-9_17

Download citation

Publish with us

Policies and ethics