Skip to main content

Finding Degree Constrained k-Cardinality Minimum Spanning Trees for Wireless Sensor Networks

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10995))

Abstract

In this paper, we consider the degree constrained k-cardinality minimum spanning tree network problem (k-DCMST). This problem arises as a combination of two classical optimization problems, namely the degree constrained and k-minimum spanning tree problems (Resp. DCMST and k-MST). Let G(VE) be a connected undirected graph formed with vertex and edge sets V and E, respectively. The DCMST problem asks for a minimum spanning tree where each maximum vertex degree is limited to a certain constant d lower than the cardinality of V minus one whilst the k-MST asks for a minimum spanning sub-tree formed with k nodes chosen from set V. Consequently, the k-DCMST asks for a sub-tree formed with k vertices where each vertex has degree lower than or equal to d. This problem is mainly motivated from the domain of wireless sensor networks where connected backbone sub-tree topologies will be mandatorily required for future technologies in order to connect any network under the internet of things paradigm. Vertex degree constraints arise naturally in order to avoid overloaded nodes in the network. We propose two compact formulations for this problem. More precisely, a Miller-Tucker-Zemlin constrained version and a single flow based formulation that we further strengthen by using the Handshaking lemma and with valid inequalities adapted from the DCMST and dominating tree problems. Numerical results are given for complete and disk graph instances for different degree values. Our preliminary numerical results indicate that the flow based model allows one to obtain optimal solutions in less CPU time for most of the instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adasme, P.: p-Median based formulations with backbone facility locations. Appl. Soft Comput. 67, 261–275 (2018)

    Article  Google Scholar 

  2. Adasme, P., Andrade, R., Leung, J., Lisser, A.: Improved solution strategies for dominating trees. Expert Syst. Appl. 100, 30–40 (2018)

    Article  Google Scholar 

  3. Adasme, P., Andrade, R., Lisser, A.: Minimum cost dominating tree sensor networks under probabilistic constraints. Comput. Netw. 112, 208–222 (2017)

    Article  Google Scholar 

  4. Andrade, R.: The spanning tree polytope revisited, Relatorio Técnico, DEMA-RCA-2014A. Universidade Federal do Ceará, Departamento de Estatística e Matemática Aplicada (2014)

    Google Scholar 

  5. Andrade, R., Lucena, A., Maculan, N.: Using Lagrangian dual information to generate degree constrained spanning trees. Discrete Appl. Math. 154, 703–717 (2006)

    Article  MathSciNet  Google Scholar 

  6. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  7. Al-Zaidi, R., Woods, J., Al-Khalidi, M., Hu, H.: Building novel VHF-based wireless sensor networks for the internet of marine things. IEEE Sens. J. 18, 2131–2144 (2018)

    Article  Google Scholar 

  8. Caccetta, L., Hill, S.P.: A branch and cut method for the degree-constrained minimum spanning tree problem. Networks 37, 74–83 (2001)

    Article  MathSciNet  Google Scholar 

  9. Cardei, M., MacCallum, D., Cheng, X.: Wireless sensor networks with energy efficient organization. J. Interconnect. Netw. 3, 3–4 (2002)

    Article  Google Scholar 

  10. Chu, Z., Zhou, F., Zhu, Z., Hu, R.Q., Xiao, P.: Wireless powered sensor networks for internet of things: maximum throughput and optimal power allocation. IEEE Internet Things 5, 310–321 (2018)

    Article  Google Scholar 

  11. Bulut, E., Korpeoglu, I.: Sleep scheduling with expected common coverage in wireless sensor networks. Wirel. Netw. 17, 19–40 (2011)

    Article  Google Scholar 

  12. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Oper. Res. Lett. 10, 27–36 (1991)

    Article  MathSciNet  Google Scholar 

  13. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. Petrop. 8, 128–140 (1736). Reprinted and translated in Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory, pp. 1736–1936. Oxford University Press (1976)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  15. Gendron, B., Lucena, A., de Cunha, A., Simonetti, L.: Benders decomposition, branch-and-cut, and hybrid algorithms for the minimum connected dominating set problem. INFORMS J. Comput. 26(4), 645–657 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: self-organization of sensor networks for efficient query execution. IEEE/ACM Trans. Netw. 14, 55–67 (2006)

    Article  Google Scholar 

  17. IBM ILOG: CPLEX High-performance mathematical programming engine. http://www.ibm.com/software/integration/optimization/cplex/

  18. Krishnamoorthy, M., Ernst, A.T., Sharaiha, Y.M.: Comparison of algorithms for the degree constrained minimum spanning tree. J. Heuristics 7, 587–611 (2001)

    Article  Google Scholar 

  19. Kruskal, J.B.: On the shortest spanning subtree and the traveling salesman problem. In: Proceedings of the American Mathematical Society, vol. 7, pp. 48–50 (1956)

    Google Scholar 

  20. Lozovanu, D., Zelikovsky, A.: Minimal and bounded tree problems. In: Tezele Congresului XVIII al Academiei Romano-Americane, Kishniev, p. 25 (1996). As cited by Ravi et al

    Google Scholar 

  21. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning tree. Comput. Oper. Res. 7, 239–249 (1980)

    Article  Google Scholar 

  22. Naveen, G.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)

    Google Scholar 

  23. Prim, R.C.: Shortest connection networks and some generalisations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  24. Ravi, R., Sundaram, R., Marathe, M., Rosenkrantz, D., Ravi, S.: Spanning trees short or small. SIAM J. Discrete Math. 9, 178–200 (1996)

    Article  MathSciNet  Google Scholar 

  25. Stankovic, J.: When sensor and actuator networks cover the world. ETRI J. 30, 627–633 (2008)

    Article  Google Scholar 

  26. Thenepalle, J.K., Singamsetty, P.: The degree constrained k-cardinality minimum spanning tree problem a lexisearch algorithm. Decis. Sci. Lett. 7, 301–310 (2018)

    Google Scholar 

  27. Volgenant, A.: A Lagrangean approach to the degree constrained minimum spanning tree problem. Eur. J. Oper. Res. 39, 325–331 (1989)

    Article  MathSciNet  Google Scholar 

  28. Wang, L., Xiao, Y.: A survey of energy-efficient scheduling mechanisms in sensor networks. Mob. Netw. Appl. 11, 723–740 (2006)

    Article  Google Scholar 

  29. Yardibi, T., Karasan, E.: A distributed activity scheduling algorithm for wireless sensor networks with partial coverage. Wirel. Netw. 16, 213–225 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Dicyt project 061713AS of VRIDi/USACH, Fondef IT17M10012, and Beca Doctorado Nacional 2016 CONICYT (PFCHA) 21161397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Adasme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adasme, P., Soto, I., Seguel, F. (2018). Finding Degree Constrained k-Cardinality Minimum Spanning Trees for Wireless Sensor Networks. In: Younas, M., Awan, I., Ghinea, G., Catalan Cid, M. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2018. Lecture Notes in Computer Science(), vol 10995. Springer, Cham. https://doi.org/10.1007/978-3-319-97163-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97163-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97162-9

  • Online ISBN: 978-3-319-97163-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics