Didactics as a Source and Remedy of Mathematical Learning Difficulties

  • Michael GaidoschikEmail author


Mathematics learning difficulties (MLD) not only become manifest in mathematics lessons but are also, as a rule—at least to some extent—caused by what happens during mathematics lessons. This statement may sound trivial to some and may be a new and even scandalous thought to others, as teachers might read it as an accusation, which is by no means intended. Much more, if there is any truth to it, it gives reason to hope that MLD, as a rule, can also be prevented or at least mitigated in their effects through changes in the ways we teach mathematics to children. To support the assertion, this chapter contributes theoretical considerations as well as empirical evidence with regard to one widely recognized key feature of MLD: the persistent use of counting strategies for solving basic addition and subtraction tasks.


Computing by counting Numerical part–whole concept Derived facts strategies 


  1. Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133–137.CrossRefGoogle Scholar
  2. Baroody, A. J. (1999). Children’s relational knowledge of addition and subtraction. Cognition and Instruction, 17(2), 137–175.CrossRefGoogle Scholar
  3. Baroody, A. J. (2006). Why children have difficulties mastering the basic number combinations and how to help them. Teaching Children Mathematics, 13(1), 22–31.Google Scholar
  4. Baroody, A. J., Bajwa, N. P., & Eiland, M. (2009). Why can't Johnny remember the basic facts? Developmental Disabilities Research Reviews, 15(1), 69–79.CrossRefGoogle Scholar
  5. Baroody, A. J., Purpura, D. J., Eiland, M. D., Reid, E. E., & Paliwal, V. (2016). Does fostering reasoning strategies for relatively difficult basic combinations promote transfer by K-3 students? Journal of Educational Psychology, 108(4), 576–591.CrossRefGoogle Scholar
  6. Baroody, A. J., & Tiilikainen, S. H. (2003). Two perspectives on addition development. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: constructing adaptive expertise (pp. 75–125). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  7. Baroody, A. J., Wilkins, J., & Tiilikainen, S. H. (2003). The development of children’s understanding of additive commutativity: from protoquantitative concept to general concept? In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: constructing adaptive expertise (pp. 127–160). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Boets, B., & De Smedt, B. (2010). Single-digit arithmetic in children with dyslexia. Dyslexia, 16(2), 183–191.Google Scholar
  9. Brownell, W. A. (1929). Remedial cases in arithmetic. Peabody Journal of Education, 7(2), 100–107.CrossRefGoogle Scholar
  10. Buchholz, L. (2004). Learning strategies for addition and subtraction facts: the road to fluency and the license to think. Teaching Children Mathematics, 10(7), 362–367.Google Scholar
  11. Canobi, K. H. (2004). Individual differences in children’s addition and subtraction knowledge. Cognitive Development, 19(1), 81–93.CrossRefGoogle Scholar
  12. Clarke, S., & Holmes, M. (2011). Mastering basic facts? I don’t need to learn them because I can work them out! In J. Clark, B. Kissane, J. Mousley, T. Spencer, & S. Thornton (Eds.), Mathematics: traditions and new practices. Proceedings of the 34th Annual Conference of the Mathematics Education Research Group of Australasia and the Australian Association of Mathematics Teachers (pp. 201–207). Adelaide, Australia: AAMT and MERGA.Google Scholar
  13. Cowan, R. (2003). Does it all add up? Changes in children’s knowledge of addition combinations, strategies, and principles. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: constructing adaptive expertise (pp. 35–74). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  14. Cumming, J. J., & Elkins, J. (1999). Lack of automaticity in the basic addition facts as a characteristic of arithmetic learning problems and instructional needs. Mathematical Cognition, 5(2), 149–180.CrossRefGoogle Scholar
  15. Devlin, K. (1994). Mathematics: the science of patterns. New York: Freeman.Google Scholar
  16. Dowker, A. (2005). Individual differences in arithmetic: implications for psychology, neuroscience and education. Oxford, UK: Psychology Press.CrossRefGoogle Scholar
  17. Dowker, A. (2009). Use of derived fact strategies by children with mathematical difficulties. Cognitive Development, 24(4), 401–410.CrossRefGoogle Scholar
  18. Dowker, A. (2014). Young children’s use of derived facts strategies for addition and subtraction. Frontiers in Human Neuroscience, 7(924).
  19. Flexer, R. (1986). The power of five: the step before the power of ten. Arithmetic Teacher, 34(3), 5–9.Google Scholar
  20. Fuson, K. C. (1992). Research on learning and teaching addition and subtraction of whole numbers. In G. Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 53–187). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. Fuson, K. C., & Kwon, Y. (1992). Korean children’s single-digit addition and subtraction: numbers structured by ten. Journal for Research in Mathematics Education, 23(2), 148–165.CrossRefGoogle Scholar
  22. Gaidoschik, M. (2003). Rechenstörungen: die „didaktogene Komponente“. Kritische Thesen zur „herkömmlichen Unterrichtspraxis“ in drei Kernbereichen der Grundschulmathematik. In F. Lenart, N. Holzer, & H. Schaupp (Eds.), Rechenschwäche—Rechenstörung—Dyskalkulie: Erkennung, Prävention, Förderung (pp. 128–153). Graz, Austria: Leykam.Google Scholar
  23. Gaidoschik, M. (2007). Rechenschwäche vorbeugen—Erstes Schuljahr: vom Zählen zum Rechnen. Vienna: G+G.Google Scholar
  24. Gaidoschik, M. (2010). Wie Kinder rechnen lernen—oder auch nicht. Frankfurt/Main, Germany: Peter Lang.CrossRefGoogle Scholar
  25. Gaidoschik, M. (2012). First-graders’ development of calculation strategies: how deriving facts helps automatize facts. Journal für Mathematik-Didaktik, 33(2), 287–315.CrossRefGoogle Scholar
  26. Gaidoschik, M. (2017). Mastery of basic addition and subtraction facts: how much and what kind of drill, at what time is sensible. Journal of Mathematics Education, 10(2), 36–47.Google Scholar
  27. Gaidoschik, M., & Beier, D. (2017). Rechnen als Handeln mit Zahl-Teilen und Zahl-Ganzen. In U. Häsel-Weide & M. Nührenbörger (Eds.), Gemeinsam Mathematik Lernen—mit allen Kindern rechnen (pp. 154–163). Frankfurt am Main, Germany: Grundschulverband.Google Scholar
  28. Gaidoschik, M., Deweis, K. M., & Guggenbichler, S. (in press). How lower-achieving children cope with derived facts-based teaching of basic multiplication: findings from a design research study. In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME 10), Dublin, 1–5 February 2017.Google Scholar
  29. Gaidoschik, M., Fellmann, A., Guggenbichler, S., & Thomas, A. (2017). Empirische Befunde zum Lehren und Lernen auf Basis einer Fortbildungsmaßnahme zur Förderung nicht-zählenden Rechnens. Journal für Mathematik-Didaktik, 37(1), 93–124.CrossRefGoogle Scholar
  30. Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15.CrossRefGoogle Scholar
  31. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552.CrossRefGoogle Scholar
  32. Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. (1996). Development of arithmetical competences in Chinese and American children: influence of age, language, and schooling. Child Development, 67(5), 2022–2044.CrossRefGoogle Scholar
  33. Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
  34. Gray, E. M. (1991). An analysis of diverging approaches to simple arithmetic: preference and its consequences. Educational Studies in Mathematics, 22(6), 551–574.CrossRefGoogle Scholar
  35. Gray, E. M. (2005). Compressing the counting process: developing a flexible interpretation of symbols. In I. Thompson (Ed.), Teaching and learning early number (pp. 63–72). Maidenhead, UK: Open University Press.Google Scholar
  36. Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: a “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140.CrossRefGoogle Scholar
  37. Hatano, G. (1992). Learning to add and subtract: a Japanese perspective. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: a cognitive perspective (pp. 211–223). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  38. Henry, V. J., & Brown, R. S. (2008). First-grade basic facts: an investigation into teaching and learning of an accelerated, high-demanding memorization standard. Journal for Research in Mathematics Education, 39(2), 153–183.Google Scholar
  39. Hopkins, S., & Bayliss, D. (2017). The prevalence and disadvantage of min-counting in seventh grade: problems with confidence as well as accuracy? Mathematical Thinking and Learning, 19(1), 19–32.CrossRefGoogle Scholar
  40. Hopkins, S., & Russo, J. (2017). Does (problem-based) practice always make proficient? In A. Downton, S. Livy, & J. Hall (Eds.), 40 years on: we are still learning! Proceedings of the 40th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 317–324). Melbourne, Australia: MERGA.Google Scholar
  41. Landerl, K., & Kaufmann, L. (2013). Dyskalkulie. München, Germany: Ernst Reinhardt.Google Scholar
  42. Li, Y., & Lappan, G. (Eds.). (2015). Mathematics curriculum in school education. Dordrecht, the Netherlands: Springer.Google Scholar
  43. Lorenz, J. H. (2003). Lernschwache Rechner fördern. Berlin, Germany: Cornelsen.Google Scholar
  44. Lorenz, J. H., & Radatz, H. (1993). Handbuch des Förderns im Mathematik-Unterricht. Hannover, Germany: Schroedel.Google Scholar
  45. Moser Opitz, E. (2001). Zählen, Zahlbegriff, Rechnen. Theoretische Grundlagen und eine empirische Untersuchung zum mathematischen Erstunterricht in Sonderklassen. Bern, Switzerland: Haupt.Google Scholar
  46. Moser Opitz, E. (2013). Rechenschwäche/Dyskalkulie: theoretische Klärungen und empirische Studien an betroffenen Schülerinnen und Schülern. Zürich, Switzerland: Haupt.Google Scholar
  47. NCTM (National Council of Teachers of Mathematics). (n.d.). Common core state standards for mathematics.
  48. Ostad, S. (1998). Developmental differences in solving simple arithmetic number-fact problems: a comparison of mathematically normal and mathematically disabled children. Mathematical Cognition, 4(1), 1–19.CrossRefGoogle Scholar
  49. Pfister, M., Moser Opitz, E., & Pauli, C. (2015). Scaffolding for mathematics teaching in inclusive primary classrooms: a video study. ZDM Mathematics Education, 47(7), 1079–1092.CrossRefGoogle Scholar
  50. Rechtsteiner-Merz, C. (2013). Flexibles Rechnen und Zahlenblickschulung. Münster, Germany: Waxmann.Google Scholar
  51. Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 109–151). New York: Academic.Google Scholar
  52. Schipper, W. (2009). Handbuch für den Mathematikunterricht an Grundschulen. Hanover, Germany: Schroedel.Google Scholar
  53. Schipper, W., & Wartha, S. (2017). Diagnostik und Förderung von Kindern mit besonderen Schwierigkeiten beim Rechnenlernen. In A. Fritz, S. Schmidt, & G. Ricken (Eds.), Handbuch Rechenschwäche (pp. 418–435). Weinheim, Germany/ Basel, Switzerland: Beltz.Google Scholar
  54. Schultz, R., Jakob, E., & Gerster, H. D. (2017). Teile-Ganzes-Denken über Zählen und Operationen: Herausforderung und Leitidee des Anfangsunterrichts. In A. Fritz, S. Schmidt, & G. Ricken (Eds.), Handbuch Rechenschwäche (pp. 206–224). Weinheim, Germany/Basel, Switzerland: Beltz.Google Scholar
  55. Siegler, R. S. (1996). Emerging minds: the process of change in children’s thinking. New York: Oxford University Press.Google Scholar
  56. Steinberg, R. (1985). Instruction on derived facts strategies in addition and subtraction. Journal for Research in Mathematics Education, 16(5), 337–355.CrossRefGoogle Scholar
  57. Thornton, C. A. (1978). Emphasizing thinking strategies in basic fact instruction. Journal for Research in Mathematics Education, 9(3), 214–227.CrossRefGoogle Scholar
  58. Thornton, C. A. (1990). Solution strategies: subtraction number facts. Educational Studies in Mathematics, 21, 241–263.CrossRefGoogle Scholar
  59. Van de Walle, J. A. (2004). Elementary and middle school mathematics: teaching developmentally. Boston: Pearson.Google Scholar
  60. Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2015). Elementary and middle school mathematics: teaching developmentally (9th ed.). Harlow, UK: Pearson.Google Scholar
  61. Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children’s arithmetic fact development: a model-based clustering approach. Journal of Experimental Child Psychology, 133, 29–46.CrossRefGoogle Scholar
  62. Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. Charlotte, NC: Information Age.Google Scholar
  63. Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., et al. (2013). Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal for Learning Disabilities, 46(6), 500–516.CrossRefGoogle Scholar
  64. Wittmann, E. Ch. (2015). Das systemische Konzept von Mathe 2000+ zur Förderung „rechen-schwacher“ Kinder. In H. Schäfer, & Ch. Rittmeyer (Eds.), Handbuch Inklusive Diagnostik (pp. 199–213). Weinheim, Germany: Beltz.Google Scholar
  65. Woodward, J. (2006). Developing automaticity in multiplication facts: integrating strategy instruction with timed practice drills. Learning Disability Quarterly, 29(4), 269–289.CrossRefGoogle Scholar
  66. Zhou, Z., & Peverly, S. T. (2005). Teaching addition and subtraction to first graders: a Chinese perspective. Psychology in the Schools, 42(3), 259–272.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of EducationFree University of Bozen – BolzanoBrixen – BressanoneItaly

Personalised recommendations