Skip to main content

Perspectives to Technology-Enhanced Learning and Teaching in Mathematical Learning Difficulties

  • Chapter
  • First Online:
International Handbook of Mathematical Learning Difficulties

Abstract

Technology has entered education quickly. In developed countries children and teachers have access to hundreds of thousands of learning applications and games. However, the digital divide is significant: some parts of the world still lack the basic requirements for participation in the digital revolution, such as electricity. Development of solar power and mobile technology will narrow this gap, rapidly revolutionizing the access to devices for technology-enabled education globally. One such area of advancements in technology is teacher education, where massive open online courses (MOOC) and other Internet sources offer today’s teachers the means to learn about the best pedagogies. Even though there is still a debate about the effectiveness of using educational technologies and the results have been inconclusive, the use of technology-enhanced learning (TEL) in education is increasing inevitably as the technologies get cheaper. At the same time, the rise in controlled intervention studies of TEL to support children and adults with MLD is offering new possibilities to understand the mechanisms of learning mathematics. During the last 10–15 years, the focus has been on different types of interventions to develop the number sense of the children with MLD. Slowly the interest is turning to more comprehensive models taking into account the core features of numerical understanding, the multiple concepts and representations in mathematics, and the cognitive skills needed in numerical processing, as well as the best pedagogical practices of special needs education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barron, M., & Torero, M. (2014). Short term effects of household electrification: experimental evidence from northern El Salvador, MPRA Paper No. 63782, 2014.

    Google Scholar 

  • Bensch, G., Kluve, J., & Peters, J. (2011, December). Impacts of rural electrification in Rwanda, IZA Discussion Papers 6195, Institute for the Study of Labor (IZA).

    Google Scholar 

  • Bergman-Nutley, S., & Klingberg, T. (2014). Effect of working memory training on working memory, arithmetic and following instructions. Psychological Research, 78(6), 869–877.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.

    Article  Google Scholar 

  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332(6033), 1049–1053.

    Article  Google Scholar 

  • Bynner, J., & Parsons, S. (1997). Does numeracy matter? London: The Basic Skills Agency.

    Google Scholar 

  • Carter, S. P., Greenberg, K., & Walker, M. S. (2017). The impact of computer usage on academic performance: Evidence from a randomized trial at the United States Military Academy. Economics of Education Review, 56, 118–132.

    Article  Google Scholar 

  • Chodura, S., Kuhn, J. T., & Holling, H. (2015). Interventions for children with mathematical difficulties: A meta-analysis. Zeitschrift für Psychologie, 223(2), 129.

    Article  Google Scholar 

  • Char, C. A. (1989). Computer graphic feltboards: New software approaches for young children’s mathematical exploration. San Francisco: American Educational Research Association.

    Google Scholar 

  • Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational Research, 53(4), 445–459.

    Article  Google Scholar 

  • Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. New York: Oxford University Press.

    Google Scholar 

  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 68.

    Article  Google Scholar 

  • Doabler, C. T., Fien, H., Nelson-Walker, N. J., & Baker, S. K. (2012). Evaluating three elementary mathematics programs for presence of eight research-based instructional design principles. Learning Disability Quarterly, 35(4), 200–211.

    Article  Google Scholar 

  • Dowker, A. (2004). What works for children with mathematical difficulties? (Vol. 554). Nottingham, UK: DfES Publications.

    Google Scholar 

  • Emerson, J., & Babtie, P. (2014). The dyscalculia solution: Teaching number sense. London, UK: Bloomsbury Publishing.

    Google Scholar 

  • Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183.

    Article  Google Scholar 

  • Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E., Xenidou-Dervou, I., Jonkman, L. M., Van der Schoot, M., & Van Lieshout, E. C. (2015). Longitudinal development of number line estimation and mathematics performance in primary school children. Journal of Experimental Child Psychology, 134, 12–29.

    Article  Google Scholar 

  • Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406.

    Article  Google Scholar 

  • Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120.

    Article  Google Scholar 

  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665.

    Article  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, (4), 12.

    Article  Google Scholar 

  • Honoré, N., & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PLoS One, 11(11), e0166685.

    Article  Google Scholar 

  • Iuculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nature Communications, 6, 8453.

    Article  Google Scholar 

  • Käser, T., Baschera, G.-M., Kohn, J., Kucian, K., Richtmann, V., Grond, U., et al. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00489

  • Käser, T., Busetto, A. G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., & Gross, M. (2012). Modelling and optimizing the process of learning mathematics. Proceedings of ITS, 7315, 389–398. https://doi.org/10.1007/978-3-642-30950-2_50

    Article  Google Scholar 

  • Käser, T., Busetto, A. G., Solenthaler, B., Baschera, G.-M., Kohn, J., Kucian, K., et al. (2013). Modelling and optimizing mathematics learning in children. International Journal of Artificial Intelligence in Education, 23, 115–135. https://doi.org/10.1007/s40593-013-0003-7

    Article  Google Scholar 

  • Kaufmann, L., Vogel, S. E., Starke, M., Kremser, C., Schocke, M., & Wood, G. (2009). Developmental dyscalculia: Compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behavioral and Brain Functions, 5(1), 1–6. https://doi.org/10.1186/1744-9081-5-35

    Article  Google Scholar 

  • Khandker, S. R., Samad, H. A., Ali, R., &, Barnes, D. F. (2012). Who benefits most from rural electrification? Evidence in India. World Bank, Working Paper, 2012.

    Book  Google Scholar 

  • Khanum, S., Hanif, R., Spelke, E. S., Berteletti, I., & Hyde, D. C. (2016). Effects of non-symbolic approximate number practice on symbolic numerical abilities in Pakistani children. PLoS One, 11(10), e0164436.

    Article  Google Scholar 

  • Kim, P., Buckner, E., Kim, H., Makany, T., Taleja, N., & Parikh, V. (2012). A comparative analysis of a game-based mobile learning model in low-socioeconomic communities of India. International Journal of Educational Development, 32(2), 329–340.

    Article  Google Scholar 

  • Kozma, R. B. (1994). Will media influence learning? Reframing the debate. Journal of Educational Technology Research and Development, 42(2), 7–19.

    Article  Google Scholar 

  • Kroesbergen, E. H., van’t Noordende, J. E., & Kolkman, M. E. (2014). Training working memory in kindergarten children: Effects on working memory and early numeracy. Child Neuropsychology, 20(1), 23–37.

    Article  Google Scholar 

  • Kucian, K., Loenneker, T., Dietrich, T., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: A fMRI study. Behavioral and Brain Functions, 2(1), 31.

    Article  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795.

    Article  Google Scholar 

  • Kuhn, J. T., & Holling, H. (2014). Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Advances in Cognitive Psychology, 10(2), 59.

    Article  Google Scholar 

  • Laurillard, D. (2016a). The educational problem that MOOCs could solve: Professional development for teachers of disadvantaged students. Research in Learning Technology, 24(1), 29369.

    Article  Google Scholar 

  • Laurillard, D. (2016b). Learning number sense through digital games with intrinsic feedback. Australasian Journal of Educational Technology, 32(6).

    Google Scholar 

  • Lavin, R. J., & Sanders, J. E. (1983). Longitudinal Evaluation of the Computer Assisted Instruction, Title I Project, 1979–82.

    Google Scholar 

  • Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22(3), 215–243.

    Article  Google Scholar 

  • Ling, R. (2004). The mobile connection. Amsterdam, Netherlands: Morgan Kaufmann Publishers.

    Google Scholar 

  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186.

    Article  Google Scholar 

  • Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.

    Article  Google Scholar 

  • Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H. C. (2013). Walk the number line – An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84.

    Article  Google Scholar 

  • Malone, T. (1981). What makes computer games fun? ACM, 13(2–3), 143.

    Google Scholar 

  • Maertens, B., De Smedt, B., Sasanguie, D., Elen, J., & Reynvoet, B. (2016). Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter? Learning and Instruction, 46, 1–11.

    Article  Google Scholar 

  • McCaskey, U., von Aster, M., Maurer, U., Martin, E., Tuura, R. O. G., & Kucian, K. (2017). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11.

    Google Scholar 

  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237.

    Article  Google Scholar 

  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011b). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.

    Article  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270.

    Article  Google Scholar 

  • Merkley, R., Matejko, A. A., & Ansari, D. (2017). Strong causal claims require strong evidence: A commentary on Wang and colleagues. Journal of Experimental Child Psychology, 153, 163–167.

    Article  Google Scholar 

  • Michels, L., O’Gorman, R., & Kucian, K. (2017). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291–303.

    Google Scholar 

  • Moyer, P. S., Niezgoda, D., & Stanley, J. (2005). Young children’s use of virtual manipulatives and other forms of mathematical representations. Technology-Supported Mathematics Learning Environments, 67, 17–34.

    Google Scholar 

  • Muldoon, K., Towse, J., Simms, V., Perra, O., & Menzies, V. (2013). A longitudinal analysis of estimation, counting skills, and mathematical ability across the first school year. Developmental Psychology, 49(2), 250.

    Article  Google Scholar 

  • Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M. C., & Noël, M. P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874.

    Article  Google Scholar 

  • NAFSA. (2010). The Changing Landscape of Global Higher Education, Association of International Educators. Washington, DC.

    Google Scholar 

  • Nemmi, F., Helander, E., Helenius, O., Almeida, R., Hassler, M., Räsänen, P., & Klingberg, T. (2016). Behavior and neuroimaging at baseline predict individual response to combined mathematical and working memory training in children. Developmental Cognitive Neuroscience, 20, 43–51.

    Article  Google Scholar 

  • Niemiec, R., & Walberg, H. J. (1987). Comparative effects of computer-assisted instruction: A synthesis of reviews. Journal of Educational Computing Research, 3(1), 19–37.

    Article  Google Scholar 

  • Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135.

    Article  Google Scholar 

  • OECD. (2015). Students, computers and learning: Making the connection. Paris: PISA, OECD Publishing.

    Book  Google Scholar 

  • Oketch, M., Mutisya, M., Ngware, M., & Ezeh, A. C. (2010). Why are there proportionately more poor pupils enrolled in non-state schools in urban Kenya in spite of FPE policy? International Journal of Educational Development, 30(1), 23–32.

    Article  Google Scholar 

  • Olson, J. K. (1988). Microcomputers make manipulatives meaningful. Budapest, Hungary: International Congress of Mathematics Education.

    Google Scholar 

  • O’Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes: Evidence from the computer games literature. The Curriculum Journal, 16(4), 455–474.

    Article  Google Scholar 

  • Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019.

    Article  Google Scholar 

  • Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200.

    Article  Google Scholar 

  • Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293.

    Article  Google Scholar 

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy, Institute of Education.

    Google Scholar 

  • Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81–98.

    Article  Google Scholar 

  • Pelton, T., & Pelton, L. F. (2012, March). Building mobile apps to support sense-making in mathematics. In Society for Information Technology & Teacher Education International Conference (pp. 4426–4431). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

    Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41.

    Article  Google Scholar 

  • Räsänen, P. (2015). Computer-assisted interventions on basic number skills. In A. Dowker & R. Cohen Kadosh (Eds.), The Oxford handbook of numerical cognition. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Räsänen, P., Käser, T., Wilson, A., von Aster, M., Maslov, O., & Maslova, U. (2015). Assistive technology for supporting learning numeracy. In B. O’Neill & A. Gillespie (Eds.), Assistive technology for cognition: A handbook for clinicians and developers. Current issues in neuropsychology (pp. 112–117). New York: Psychology Press.

    Google Scholar 

  • Räsänen, P., Salminen, J., Wilson, A., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472.

    Article  Google Scholar 

  • Rauscher, L., Kohn, J., Käser, T., Kucian, K., McCaskey, U., Wyschkon, A., et al. (2017). Effekte des Calcularis-Trainings. Lernen und Lernstörungen, 6, 75–86.

    Article  Google Scholar 

  • Rauscher, L., Kohn, J., Käser, T., Mayer, V., Kucian, K., McCaskey, U., et al. (2016). Evaluation of a computer-based training program for enhancing arithmetic skills and spatial number representation in primary school children. Frontiers in Psychology, 7, 913.

    Article  Google Scholar 

  • Reimer, K., & Moyer, P. S. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. The Journal of Computers in Mathematics and Science Teaching, 24(1), 5.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2004). Building blocks for early childhood mathematics. Early Childhood Research Quarterly, 19(1), 181–189.

    Article  Google Scholar 

  • Samara, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.

    Article  Google Scholar 

  • Sella, F., Tressoldi, P., Lucangeli, D., & Zorzi, M. (2016). Training numerical skills with the adaptive videogame “The Number Race”: A randomized controlled trial on preschoolers. Trends in Neuroscience and Education, 5(1), 20–29.

    Article  Google Scholar 

  • Shuler, C., Levine, Z., & Ree, J. (2012). iLearn II An analysis of the education category of Apple’s app store. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.362.6454

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11(5), 655–661.

    Article  Google Scholar 

  • Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: the role of visuomotor integration and visuospatial skills. Journal of Experimental Child Psychology, 145, 22–33.

    Article  Google Scholar 

  • Slavin, R. E., & Lake, C. (2008). Effective programs in elementary mathematics: A best-evidence synthesis. Review of Educational Research, 78(3), 427–515.

    Article  Google Scholar 

  • St Clair-Thompson, H., Stevens, R., Hunt, A., & Bolder, E. (2010). Improving children’s working memory and classroom performance. Educational Psychology, 30(2), 203–219.

    Article  Google Scholar 

  • Squires, T. (2015). The impact of access to electricity on education: Evidence from Honduras. Job Market Paper, Brown University. Available at https://economics.ucr.edu/seminars_colloquia/2014-15/applied_economics/Squires_JMP_Electricity.pdf

  • Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252–275.

    Article  Google Scholar 

  • Szűcs, D., & Myers, T. (2017). A critical analysis of design, facts, bias and inference in the approximate number system training literature: A systematic review. Trends in Neuroscience and Education, 6, 187–203.

    Article  Google Scholar 

  • UNESCO. (2014a). Institute of Statistics. A view inside schools in Africa: Regional education survey. Paris.

    Google Scholar 

  • UNESCO. (2014b). EFA Global Monitoring Report: Teaching and learning – Achieving quality for all. Paris.

    Google Scholar 

  • UNDESA. (2014). Electricity and education: The benefits, barriers, and recommendations for achieving the electrification of primary and secondary schools. Retrived from https://sustainabledevelopment.unorg/content/documents/1608Electricity%20and%20Education.pdf

  • von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873.

    Article  Google Scholar 

  • Vanbinst, K., Ansari, D., Ghesquière, P., & De Smedt, B. (2016). Symbolic numerical magnitude processing is as important to arithmetic as phonological awareness is to reading. PLoS One, 11(3), e0151045.

    Article  Google Scholar 

  • Wakefield, J. F. (1998). A Brief History of Textbooks: Where Have We Been All These Years? A paper presented at the Meeting of the Text and Academic Authors (St. Petersburg, FL, June 12–13).

    Google Scholar 

  • Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82–99.

    Article  Google Scholar 

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(1), 20.

    Article  Google Scholar 

  • Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3(4), 224–234.

    Article  Google Scholar 

  • Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201–206.

    Article  Google Scholar 

  • World Bank. (2016). World Development Report 2016: Digital Dividends. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-0671-1. License: Creative Commons Attribution CC BY 3.0 IGO

  • Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249.

    Article  Google Scholar 

  • Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., et al. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61–89.

    Article  Google Scholar 

  • Zhang, Y., Postlehwaite, T. N., & Grisay, A. (2008). A view inside primary schools: A World Education Indicators (WEI) cross-national study. Paris: UNESCO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Räsänen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Räsänen, P., Laurillard, D., Käser, T., von Aster, M. (2019). Perspectives to Technology-Enhanced Learning and Teaching in Mathematical Learning Difficulties. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97148-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97147-6

  • Online ISBN: 978-3-319-97148-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics