Everyday Context and Mathematical Learning: On the Role of Spontaneous Mathematical Focusing Tendencies in the Development of Numeracy

  • Minna M. Hannula-SormunenEmail author
  • Jake McMullen
  • Erno Lehtinen


This chapter summarizes classical studies on numeracy development and highlights the impact of children’s own, self-initiated numerical activities in informal everyday situations on the learning trajectories toward an advanced number sense. Theories and empirical evidence of the role early exact and approximate magnitude processing, relational reasoning, counting, number sequence, and arithmetical skills play in the development of natural and rational number knowledge are described. Furthermore, studies on spontaneous focusing on numerosity (SFON) and spontaneous focusing on quantitative relations (SFOR) are described arguing that individual differences in self-initiated focusing on numerosity and quantitative relations explain some of the individual differences in children’s numerical development during the childhood years and primary school. Based on this literature review, we claim that it is important for formal mathematics education to early on take into account children’s own mathematically relevant activities in both formal and informal situations.


Children Numeracy development Number concept Rational number Counting Spontaneous focusing on numerosity Spontaneous focusing on quantitative relations 


  1. Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). London: Lawrence Erlbaum.Google Scholar
  2. Batchelor, S. (2014). Dispositional factors affecting children’s early numerical development. Loughborough University, Leicestershire, United Kingdom. Retrieved from
  3. Batchelor, S., Inglis, M., & Gilmore, C. (2015). Spontaneous focusing on numerosity and the arithmetic advantage. Learning and Instruction, 40(2–3), 116–135.Google Scholar
  4. Blevins-Knabe, B., Austin, A. B., Musun, L., Eddy, A., & Jones, R. M. (2000). Family home care providers’ and parents’ beliefs and practices concerning mathematics with young children. Early Child Development and Care, 165(1), 41–58.CrossRefGoogle Scholar
  5. Bojorque, G., Torbeyns, J., Hannula-Sormunen, M., Van Nijlen, D., & Verschaffel, L. (2016). Development of SFON in Ecuadorian kindergartners. European Journal of Psychology of Education. 32, 449–462.CrossRefGoogle Scholar
  6. Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3=2/6=3/9=4/12? Journal of Experimental Child Psychology, 111(3), 516–533.CrossRefGoogle Scholar
  7. Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478–1490.CrossRefGoogle Scholar
  8. Braithwaite, D. W., Tian, J., & Siegler, R. S. (2017). Do children understand fraction addition? Developmental Science, e12601. 21, 4.Google Scholar
  9. Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618.CrossRefGoogle Scholar
  10. Cahoon, A., Cassidy, T., & Simms, V. (2017). Parents’ views and experiences of the informal and formal home numeracy environment. Learning, Culture and Social Interaction, 15(August), 69–79.CrossRefGoogle Scholar
  11. Carraher, D., Schliemann, A. D., & Brizuela, B. M. (2001). Can young students operate on unknowns. In Proceedings of the XXV Conference of the International Group for the Psychology of Mathematics Education (pp. 130–140).Google Scholar
  12. Chi, M. T. H., & Klahr, D. (1975). Span and rate of apprehension in children and adults. Journal of Experimental Child Psychology, 3, 93–102.Google Scholar
  13. Clements, D. H., & Sarama, J. (2014). Learning and teaching early math. The learning trajectories approach (2nd ed.). New York: Routledge.CrossRefGoogle Scholar
  14. Cowan, R., Dowker, A., Christakis, A., & Bailey, S. (1996). Even more precisely assessing children’s understanding of order-irrelevance principle. Journal of Experimental Child Psychology, 62, 84–101.CrossRefGoogle Scholar
  15. Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.Google Scholar
  16. Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217–1220.CrossRefGoogle Scholar
  17. Edens, K. M., & Potter, E. F. (2013). An exploratory look at the relationships among Math skills, motivational factors and activity choice. Early Childhood Education Journal, 41(3), 235–243.CrossRefGoogle Scholar
  18. Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6, 568–584.CrossRefGoogle Scholar
  19. Frydman, O., & Bryant, P. (1988). Sharing and the understanding of number equivalence by young children. Cognitive Development, 3(4), 323–339.CrossRefGoogle Scholar
  20. Fuson, K. (1988). Children’s counting and concepts of number. New York: Springer Verlag.CrossRefGoogle Scholar
  21. Fuson, K., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. In C. J. Brainerd (Ed.), Children’s logical and mathematical cognition. Progress in cognitive development research (pp. 33–92). New York: Springer-Verlag.CrossRefGoogle Scholar
  22. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
  23. Ginsburg, H. P., Duch, H., Ertle, B., & Noble, K. G. (2012). How can parents help their children learn math? In B. H. Wasik (Ed.), Handbook of family literacy (pp. 51–65). New York: Routledge/Taylor & Francis Group.Google Scholar
  24. Greiffenhagen, C. G., & Sharrock, W. (2008). School mathematics and its everyday other? Revisiting Lave’s ‘Cognition in Practice’. Educational Studies in Mathematic, 69, 1–21 Hannula-Sormunen, M. M. (2014). Spontaneous focusing on numerosity and its relation to counting and arithmetic. In A. Dowker & R. Cohen Kadosh (Eds.), Oxford handbook of mathematical cognition (pp. 275–290). Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Hannula, M. M. (2005). Spontaneous focusing on numerosity in the development of early mathematical skills (Annales Un). Turku, Finland: Painosalama.Google Scholar
  26. Hannula, M. M., & Lehtinen, E. (2001). Spontaneous tendency to focus on numerosities in the development of cardinality. In M. Panhuizen-Van Heuvel (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 113–120). Amersfoort, The Netherlands: Drukkerij Wilco.Google Scholar
  27. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256.CrossRefGoogle Scholar
  28. Hannula, M. M., Lepola, J., & Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal of Experimental Child Psychology, 107(4), 394–406.CrossRefGoogle Scholar
  29. Hannula, M. M., Mattinen, A., & Lehtinen, E. (2005). Does social interaction influence 3-year-old children’s tendency to focus on numerosity? A quasi-experimental study in day care. In L. Verschaffel, E. De Corte, G. Kanselaar, & M. Valcke (Eds.), Powerful environments for promoting deep conceptual and strategic learning (pp. 63–80).Google Scholar
  30. Hannula, M. M., Räsänen, P., & Lehtinen, E. (2007). Development of counting skills: Role of spontaneous focusing on numerosity and subitizing-based enumeration. Mathematical Thinking and Learning, 9, 51–57.CrossRefGoogle Scholar
  31. Hannula-Sormunen, M. M. (2014). Spontaneous focusing on numerosity and its relation to counting and arithmetic. In A. Dowker & R. Cohen Kadosh (Eds.), Oxford handbook of mathematical cognition (pp. 275–290). Croydon, UK: Oxford University Press.Google Scholar
  32. Hannula-Sormunen, M. M., Alanen, A., McMullen, J., & Lehtinen, E. (2016) Integrating SFON enhancement with computerized arithmetical training – A pilot study. Poster presented at the Workshop “Domain-General and Domain-Specific Foundation of Numerical and Arithmetic Processing”, 28–30 September, Tuebingen.Google Scholar
  33. Hannula-Sormunen, M. M., Lehtinen, E., & Räsänen, P. (2015). Preschool children’s spontaneous focusing on numerosity, subitizing, and counting skills as predictors of their mathematical performance seven years later at school. Mathematical Thinking and Learning, 17(2–3), 155–177.CrossRefGoogle Scholar
  34. Hannula-Sormunen, M. M., Nanu, C., Laakkonen, E., Batchelor, S., Simms, V., De Smedt, B., et al. (in preparation). Spontaneous focusing on numerosity as second-order factor. Manuscript in preparation, 2018.Google Scholar
  35. Holgersson, I., Barendregt, W., Emanuelsson, J., Ottosson, T., Rietz, E., & Lindstrom, B. (2016). Fingu-A game to support children’s development of arithmetic competence: Theory, design and empirical research. In International perspectives on teaching and learning mathematics with virtual manipulatives (Vol. 7, pp. 123–145). Cham, Switzerland: Springer.Google Scholar
  36. Jevons, S. (1871). The power of numerical discrimination. Nature, 3, 281–282.CrossRefGoogle Scholar
  37. Kucian, K., Kohn, J., Hannula-Sormunen, M. M., Richtmann, V., Grond, U., Käser, T., et al. (2012). Kinder mit Dyskalkulie fokussieren spontan weniger auf Anzahligkeit [Children with Developmental Dyscalculia Focus Spontaneously Less on Numerosities]. Lernen Und Lernstörungen, 1(4), 241–253.CrossRefGoogle Scholar
  38. Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  39. Lefevre, J. A., Clarke, T., & Stringer, A. P. (2002). Influences of language and parental involvement on the development of counting skills: Comparisons of French- and English-speaking Canadian children. Early Child Development and Care, 172(3), 283–300.CrossRefGoogle Scholar
  40. LeFevre, J.-A., Skwarchuk, S.-L., Smith-Chant, B. L., Fast, L., Kamawar, D., & Bisanz, J. (2009). Home numeracy experiences and children’s math performance in the early school years. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 41(2), 55–66.CrossRefGoogle Scholar
  41. Lehtinen, E., Hannula-Sormunen, M., McMullen, J., & Gruber, H. (2017). Cultivating mathematical skills: From drill-and-practice to deliberate practice. ZDM – Mathematics Education, 49(4), 625–636.CrossRefGoogle Scholar
  42. Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–1958.CrossRefGoogle Scholar
  43. Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53, 72–103.CrossRefGoogle Scholar
  44. Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Erlbaum.Google Scholar
  45. Mattinen, A. (2006). Huomio lukumääriin: Tutkimus 3-vuotiaiden lasten matemaattisten taitojen tukemisesta päiväkodissa [Focus on numerosities: A study on supporting 3 year-old children’s mathematical development in day care]. Turku, Finland: Painosalama.Google Scholar
  46. McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15, 776–781.CrossRefGoogle Scholar
  47. McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month- old infants. Psychological Science, 18, 740–745.CrossRefGoogle Scholar
  48. McMullen, J. (2014). Spontaneous focusing on quantitative relations and the development of rational number conceptual knowledge. Turku, Finland: Painosalama.Google Scholar
  49. McMullen, J., Hannula-Sormunen, M., & Lehtinen, E. (2017). Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. Contemporary Educational Psychology, 51, 356–365.CrossRefGoogle Scholar
  50. McMullen, J., Hannula-Sormunen, M. M., Kainulainen, M., Kiili, K., & Lehtinen, E. (in press). Moving mathematics out of the classroom: Using mobile technology to enhance spontaneous focusing on quantitative relations. British Journal of Educational Technology.Google Scholar
  51. McMullen, J., Hannula-Sormunen, M. M., Laakkonen, E., & Lehtinen, E. (2016). Spontaneous focusing on quantitative relations as a predictor of the development of rational number conceptual knowledge. Journal of Educational Psychology, 108(6), 857–868.CrossRefGoogle Scholar
  52. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2011). Young children’s spontaneous focusing on quantitative aspects and their verbalizations of their quantitative reasoning. In B. Ubuz (Ed.), Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (pp. 217–224). Ankara, Turkey: PME.Google Scholar
  53. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2013). Young children’s recognition of quantitative relations in mathematically unspecified settings. Journal of Mathematical Behavior, 32(3), 450–460.CrossRefGoogle Scholar
  54. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2014). Spontaneous focusing on quantitative relations in the development of children’s fraction knowledge. Cognition and Instruction, 32(2), 198–218.CrossRefGoogle Scholar
  55. McMullen, J., Hannula-Sormunen, M. M., Lehtinen, E., & Siegler, R. S. (submitted). Adaptive rational number knowledge and spontaneous focusing on multiplicative relations.Google Scholar
  56. Merenluoto, K., & Lehtinen, E. (2004). Number concept and conceptual change: Towards a systemic model of the processes of change. Learning and Instruction, 14(5), 519–534.CrossRefGoogle Scholar
  57. Missall, K., Hojnoski, R. L., Caskie, G. I. L., & Repasky, P. (2015). Home numeracy environments of preschoolers: Examining relations among mathematical activities, parent mathematical beliefs, and early mathematical skills. Early Education and Development, 26(3), 356–376.CrossRefGoogle Scholar
  58. Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Math without words: Quantitative development in infancy and early childhood. New York: Oxford University Press.CrossRefGoogle Scholar
  59. Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35(5), 164–174.CrossRefGoogle Scholar
  60. Mullis, I. V. S., Martin, M. O., Goh, S., & Cotter, K. (2016). TIMSS 2015 Encyclopedia: Education policy and curriculum in mathematics and science. Retrieved from
  61. Nanu, E. C., McMullen, J., Munck, P., Pipary Study Group, & Hannula-Sormunen, M. M. (2018). Spontaneous focusing on numerosity in preschool as a predictor of mathematical skills and knowledge in the fifth grade. Journal of Experimental Child Psychology, 169, 42–58.CrossRefGoogle Scholar
  62. Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52.CrossRefGoogle Scholar
  63. Nunes, T., & Bryant, P. (1996). Children doing mathematics. Cornwall, UK: T.J. Press.Google Scholar
  64. Nunes, T., & Bryant, P. (2008). Rational numbers and intensive quantities: Challenges and insights to pupils’ implicit knowledge. Anales De Psicologia, 24, 262–270.Google Scholar
  65. Piaget, J. (1955). The construction of reality in the child. Psychological Bulletin, 52(1955), 526–528.Google Scholar
  66. Pongsakdi, N., Laine, T., Veermans, K., Hannula-Sormunen, M. M., & Lehtinen, E. (2016). Improving word problem performance in elementary school students by enriching word problems used in mathematics teaching. NOMAD, Nordic Studies in Mathematics Education, 21(2). Retrieved from
  67. Potter, E. F. (2009). Spontaneous focusing on numerosity: Motivational and skill correlates in young children in a public preschool and kindergarten program. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the 31st annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education (pp. 152–155). Atlanta, GA: Georgia State University Press.Google Scholar
  68. Rathé, S., Torbeyns, J., Hannula-Sormunen, M. M., De Smedt, B., & Verschaffel, L. (2016). Spontaneous focusing on numerosity: A review of recent research. Mediterrean Journal for Research on Mathematics Education, 15, 1–25.Google Scholar
  69. Resnick, L. B. (1987). The 1987 presidential address: Learning in school and out. Educational Researcher, 16(9), 13–20; 54.Google Scholar
  70. Resnick, L. B. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. In G. Leinhardt, R. T. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 373–429). Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.Google Scholar
  71. Resnick, L. B., & Greeno, J. G. (1990). Conceptual growth of number and quantity. Unpublished manuscript.Google Scholar
  72. Sarnecka, B. W., & Gelman, S. A. (2004). Six does not just mean a lot: Preschoolers see number words as specific. Cognition, 92, 329–352.CrossRefGoogle Scholar
  73. Sathian, K., Simon, T. J., Peterson, S., Patel, G. A., Hoffman, J. M., & Grafton, S. T. (1999). Neural evidence linking visual object enumeration and attention. Journal of Cognitive Neuroscience, 11, 36–51.CrossRefGoogle Scholar
  74. Saxe, G. B., Guberman, S. R., & Gearhart, M. (1987). Social processes in early number development. Monographs of the Society for Research in Child Development, 52, Serial No. 216.CrossRefGoogle Scholar
  75. Schliemann, A. D., & Nunes, T. (1990). A situated schema of proportionality. British Journal of Developmental Psychology, 8(3), 259–268.CrossRefGoogle Scholar
  76. Siegler, R. S. (2016). Continuity and change in the field of cognitive development and in the perspectives of one cognitive developmentalist. Child Development Perspectives, 10, 128–133.CrossRefGoogle Scholar
  77. Skwarchuk, S. L., Sowinski, C., & LeFevre, J. A. (2014). Formal and informal home learning activities in relation to children’s early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 121(1), 63–84.CrossRefGoogle Scholar
  78. Sophian, C. (1998). A developmental perspective on children’s counting. In C. Donlan (Ed.), The development of mathematical skills (pp. 27–41). Hove, UK: Taylor & Francis.Google Scholar
  79. Sophian, C. (2007). The origins of mathematical knowledge in childhood. New York: Lawrence Erlbaum.Google Scholar
  80. Sophian, C., Harley, H., & Martin, C. S. M. (1995). Relational and representational aspects of early number development. Cognition and Instruction, 13(2), 253–268.CrossRefGoogle Scholar
  81. Spelke, E. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind. Cambridge, MA: MIT Press.Google Scholar
  82. Spinillo, A. G., & Bryant, P. E. (1999). Proportional reasoning in young children: Part – Part comparisons about continuous and discontinous quantity. Mathematical Cognition, 5(2), 181–197.CrossRefGoogle Scholar
  83. Starkey, P., & Cooper, R. G. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13, 399–420.CrossRefGoogle Scholar
  84. Trick, L., Enns, J. T., & Brodeur, D. A. (1996). Life span changes in visual enumeration: The number discrimination task. Developmental Psychology, 32, 925–932.CrossRefGoogle Scholar
  85. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80–102.CrossRefGoogle Scholar
  86. Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14(5), 453–467.CrossRefGoogle Scholar
  87. Van Hoof, J., Degrande, T., McMullen, J., Hannula-Sormunen, M. M., Lehtinen, E., Verschaffel, L., et al. (2016). The relation between learners’ spontaneous focusing on quantitative relations and their rational number knowledge. Studia Psychologica, 58(2), 156–170.CrossRefGoogle Scholar
  88. Wager, A. A. (2012). Incorporating out-of-school mathematics: From cultural context to embedded practice. Journal of Math Teacher Education, 15, 9–23.CrossRefGoogle Scholar
  89. Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.CrossRefGoogle Scholar
  90. Wynn, K. (1992a). Addition and subtraction by human infants. Nature, 358, 749–750.CrossRefGoogle Scholar
  91. Wynn, K. (1992b). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24, 220–251.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Minna M. Hannula-Sormunen
    • 1
    Email author
  • Jake McMullen
    • 1
  • Erno Lehtinen
    • 1
  1. 1.Department of Teacher Education and Centre for Research on Learning and InstructionUniversity of TurkuTurkuFinland

Personalised recommendations