Skip to main content

Genetics of Dyscalculia 1: In Search of Genes

  • Chapter
  • First Online:

Abstract

In this chapter, we review the genetic foundations of developmental dyscalculia. We begin by briefly reviewing the clinical epidemiology of dyscalculia. Next, we review evidence for genetic susceptibility from familial aggregation and heritability estimates. Evidence for genetic susceptibility is substantial but associated with some limitations. Familial aggregation studies do not distinguish genetic from environmental influences. As heritability does not identify specific genes, it applies only at the population, not at the individual level. Current molecular genetic methods are helping to identify specific genes implicated in dyscalculia. We discuss evidence from genome-wide association studies on dyscalculia and on its comorbidities, mainly dyslexia, autism, and specific language impairment. The number of such studies is small but growing. So far, some candidate genes have been identified, but none of them has yet been confirmed in independent studies. Developmental dyscalculia is a heterogeneous phenotype. Future advances depend, among other things, on improvements in phenotype characterization and identification of families with clear phenotypic segregation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asbury, K., & Plomin, R. (2013). G is for genes: The impact of genetics on education and achievement. Chichester/Oxford: Wiley Blackwell.

    Book  Google Scholar 

  • Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46, 549–569.

    Article  Google Scholar 

  • Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral characteristics over a six-year period in youths with persistent and nonpersistent dyscalculia. Journal of Learning Disabilities, 41(3), 263–273.

    Article  Google Scholar 

  • Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatošová, S., et al. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5), e96374.

    Article  Google Scholar 

  • Bishop, D. V. M. (2015). The interface between genetics and psychology: Lessons from developmental dyslexia. Proceedings of the Royal Society of London, B, 282, 20143139. https://doi.org/10.1098/rspb.2014.3139

    Article  Google Scholar 

  • Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20, 83–90. https://doi.org/10.1016/j.molmed.2013.10.008

    Article  Google Scholar 

  • Brazil, Ministry of Education. (2016). Brazil in PISA 2015. Executive summary. Brasília: Author. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiG2Juwn_jWAhXIPpAKHcnABRsQFggyMAI&url=http%3A%2F%2Fdownload.inep.gov.br%2Facoes_internacionais%2Fpisa%2Fdocumentos%2F2016%2Fbrazil_in_pisa_2015_digital.PDF&usg=AOvVaw0dPTfLqCD2mEIZzKKdElEW.

  • Budd, C. J. (2015). Promoting maths to the general public pp. In R. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 3–16). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.024

    Chapter  Google Scholar 

  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.

    Article  Google Scholar 

  • Capano, L., Minden, D., Chen, S. X., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. The Canadian Journal of Psychiatry, 53(6), 392–399.

    Article  Google Scholar 

  • Chen, H., Gu, X. H., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., et al. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7, 40365.

    Article  Google Scholar 

  • Choi, K. H., Zepp, M. E., Higgs, B. W., Weickert, C. S., & Webster, M. J. (2009). Expression profiles of schizophrenia susceptibility genes during human prefrontal cortical development. Journal of Psychiatry and Neuroscience, 34(6), 450–458.

    Google Scholar 

  • Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34(1), 404–412.

    Article  Google Scholar 

  • Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39.

    Article  Google Scholar 

  • Docherty, S. J., Davis, O. S., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., et al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain and Behavior, 9(2), 234–247. https://doi.org/10.1111/j.1601-183X.2009.00553.x.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. New York, NY: Psychology Press.

    Book  Google Scholar 

  • Ehlert, A., Schroeders, U., & Fritz, A. (2012). Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie (criticizing the definition of dyscalculia and dyslexia via difference scores). Lernen und Lernstörungen, 1(3), 169–184.

    Article  Google Scholar 

  • Gamboa, L. F., & Waltenberg, F. D. (2012). Inequality of opportunity for educational achievement in Latin America: Evidence from PISA 2006–2009. Economics of Education Review, 31(5), 694–708.

    Article  Google Scholar 

  • Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25–33.

    Article  Google Scholar 

  • Haase, V. G., & Carvalho, M. R. S. (2018). Genetics of dyscalculia 2: In search of endophenotypes. In A. Fritz-Stratmann, V. G. Haase, & P. Räsänen (Eds.), The international handbook of math learning difficulties: From the lab to the classroom. São Paulo, Brazil: Springer.

    Google Scholar 

  • Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark, E., et al. (2010). Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. Learning Disability Quarterly, 33(3), 223–236.

    Article  Google Scholar 

  • Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21(11), 1708–1715. https://doi.org/10.1177/0956797610386617

    Article  Google Scholar 

  • Haworth, C. M., Kovas, Y., Petrill, S. A., & Plomin, R. (2007). Developmental origins of low mathematics performance and normal variation in twins from 7 to 9 years. Twin Research and Human Genetics, 10(1), 106–117.

    Article  Google Scholar 

  • Hohol, M., Cipora, K., Willmes, K., & Nuerk, H. C. (2017). Bringing back the balance: Domain-general processes are also important in numerical cognition. Frontiers in Psychology, 8, 499.

    Article  Google Scholar 

  • Hu, B. H., Cai, Q., Hu, Z., Patel, M., Bard, J., Jamison, J., & Coling, D. (2012, Oct 24). Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. The Journal of Neuroscience, 32(43), 14927–14941. https://doi.org/10.1523/JNEUROSCI.1588-12.2012

    Article  Google Scholar 

  • Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochemical and Biophysical Research Communications, 452, 236–243.

    Article  Google Scholar 

  • Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J. B., et al. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences, 111(42), 15273–15278.

    Article  Google Scholar 

  • Landerl, K., Göbel, S. M., & Moll, K. (2013). Core deficit and individual manifestations of developmental dyscalculia (DD): The role of comorbidity. Trends in Neuroscience and Education, 2, 38–42.

    Article  Google Scholar 

  • Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294. https://doi.org/10.1111/j.1469-7610.2009.02164.x

    Article  Google Scholar 

  • Ludwig, K. U., Sämann, P., Alexander, M., Becker, J., Bruder, J., Moll, K., et al. (2013). A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. Translational Psychiatry, 3(2), e229.

    Article  Google Scholar 

  • Malfatti, E., Böhm, J., Lacène, E., Beuvin, M., Brochier, G., Romero, N. B., & Laporte, J. (2015). A premature stop codon in MYO18B is associated with severe Nemaline myopathy with cardiomyopathy. Journal of Neuromuscular Diseases, 2(3), 219–227. https://doi.org/10.3233/JND-150085

    Article  Google Scholar 

  • Marino, C., Mascheretti, S., Riva, V., Cattaneo, F., Rigoletto, C., Rusconi, M., et al. (2011). Pleiotropic effects of DCDC2 and DYX1C1 genes on language and mathematics traits in nuclear families of developmental dyslexia. Behavior Genetics, 41(1), 67–76. https://doi.org/10.1007/s10519-010-9412-7

    Article  Google Scholar 

  • Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore: Brookes.

    Google Scholar 

  • Nava, C., Keren, B., Mignot, C., Rastetter, A., Chantot-Bastaraud, S., et al. (2014). Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. European Journal of Human Genetics, 22, 71–78.

    Article  Google Scholar 

  • Nishioka, M., Kohno, T., Tani, M., Yanaihara, N., Tomizawa, Y., Otsuka, A., et al. (2002). MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 99, 12269–12274.

    Article  Google Scholar 

  • Oliveira-Ferreira, F., Costa, D. S., Micheli, L. R., Pinheiro-Chagas, P., & Haase, V. G. (2012). School achievement test: Normative data for a representative sample of elementary school children. Psychology & Neuroscience, 5, 157–164.

    Article  Google Scholar 

  • Paracchini, S., Diaz, R., & Stein, J. (2016). Advances in dyslexia genetics – New insights into the role of brain asymmetries. Advances in Genetics, 96, 53–97. https://doi.org/10.1016/bs.adgen.2016.08.003

    Article  Google Scholar 

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: University of London, Institute of Education National Research and Development Centre for Adult Literacy and Numeracy. Available in: eprints.ioe.ac.uk/4758/1/parsons2006does.pdf

  • Petrill, S. A., Kovas, Y., Hart, S. A., Thompson, L. A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10-year-old twins. Behavior Genetics, 39(4), 371–379. https://doi.org/10.1007/s10519-009-9258-z

    Article  Google Scholar 

  • Pettigrew, K. A., Fajutrao Valles, S. F., Moll, K., Northstone, K., Ring, S., Pennell, C., et al. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 14(4), 369–376.

    Article  Google Scholar 

  • Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. NeuroImage, 81, 306–316.

    Article  Google Scholar 

  • Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123–135. https://doi.org/10.1037/a0025356

    Article  Google Scholar 

  • Sagar, A., Bishop, J. R., Tessman, D. C., Guter, S., Martin, C. L., et al. (2013). Cooccurrence of autism, childhood psychosis, and intellectual disability associated with a de novo 3q29 microdeletion. American Journal of Medical Genetics, A161, 845–849.

    Article  Google Scholar 

  • Serra-Juhé, C., Martos-Moreno, G. Á., Bou de Pieri, F., Flores, R., González, J. R., Rodríguez-Santiago, B., et al. (2017). Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants. PLoS Genetics, 13(5), e1006657. https://doi.org/10.1371/journal.pgen.1006657

    Article  Google Scholar 

  • Shalev, R. S., Auerbach, J., & Gross-Tsur, V. (1995). Developmental dyscalculia behavioral and attentional aspects: A research note. Journal of Child Psychology and Psychiatry, 36(7), 1261–1268.

    Article  Google Scholar 

  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47(2), 121–125.

    Article  Google Scholar 

  • Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34(1), 59–65.

    Article  Google Scholar 

  • Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnarsdottir, S., et al. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature, 505(7483), 361–366.

    Article  Google Scholar 

  • Sturman, L. (2015). What is there to learn from international surveys in mathematical achievement. In R. Kadosh & A. C. Dowker (Eds.), Oxford handbook of numerical cognition. Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.024

    Chapter  Google Scholar 

  • Szklarczyk, A., Ewaleifoh, O., Beique, J. C., Wang, Y., Knorr, D., Haughey, N., et al. (2008, Nov). MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. The FASEB Journal, 22(11), 3757–3767. https://doi.org/10.1096/fj.07-101402

    Article  Google Scholar 

  • Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., et al. (2016). Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by regulatory factor X (RFX) transcription factors through X-box promoter motifs. The FASEB Journal, 30(10), 3578–3587. https://doi.org/10.1096/fj.201500124RR

    Article  Google Scholar 

  • Tarkar, A., Loges, N. T., Slagle, C. E., Francis, R., Dougherty, G. W., Tamayo, J. V., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45(9), 995–1003. https://doi.org/10.1038/ng.2707

    Article  Google Scholar 

  • Trulioff, A., Ermakov, A., & Malashichev, Y. (2017). Primary cilia as a possible link between left-right asymmetry and neurodevelopmental diseases. Genes, 8(2), 48. https://doi.org/10.3390/genes8020048

    Article  Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., d’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.

    Article  Google Scholar 

  • Ulfarsson, M. O., Walters, G. B., Gustafsson, O., Steinberg, S., Silva, A., Doyle, O. M., et al. (2017). 15q11. 2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Translational Psychiatry, 7(4), e1109. https://doi.org/10.1038/tp.2017.77

    Article  Google Scholar 

  • Willatt, L., Cox, J., Barber, J., Cabanas, E. D., Collins, A., et al. (2005). 3q29 microdeletion syndrome: Clinical and molecular characterization of a new syndrome. American Journal of Human Genetics, 77, 154–160.

    Article  Google Scholar 

  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning and the developing brain: Atypical development (pp. 212–378). New York: Guilford.

    Google Scholar 

  • Wong, T. T. Y., Ho, C. S., & Tang, J. (2014). Identification of children with mathematics learning disabilities (MLDs) using latent class growth analysis. Research in Developmental Disabilities, 35, 2906–2929.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Raquel S. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carvalho, M.R.S., Haase, V.G. (2019). Genetics of Dyscalculia 1: In Search of Genes. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97148-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97147-6

  • Online ISBN: 978-3-319-97148-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics