Skip to main content

Neurocognitive Perspective on Numerical Development

  • Chapter
  • First Online:
International Handbook of Mathematical Learning Difficulties

Abstract

Cognitive processing of numbers is an important subcomponent of arithmetic skills, which has been found to be often deficient in children with mathematical learning disorder. This chapter summarizes current knowledge on the development of the cognitive representations of different number formats (analog magnitudes, number words, Arabic numbers). It provides an overview of experimental effects of numerical processing that are informative with respect to the neurocognitive representation of numbers (e.g., distance, size congruity, compatibility, SNARC effect) and reports recent findings on relevant neural networks in typical and atypical development. Implications for instruction and intervention are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrillo, C. (2015). Numerical and arithmetic abilities in non-primate species. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 214–236). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Barouillet, P., Camos, V., Perruchet, P., & Seron, X. (2004). ADAPT: A developmental, asemantic, and procedural model for transcoding from verbal to Arabic numerals. Psychological Review, 111(2), 368–394.

    Article  Google Scholar 

  • Barrouillet, P., & Fayol, M. (1998). From algorithmic computing to direct retrieval: Evidence from number and alphabetic arithmetic in children and adults. Memory & Cognition, 26(2), 355–368.

    Article  Google Scholar 

  • Benavides-Varela, S., Butterworth, B., Burgio, F., Arcara, G., Lucangeli, D., & Semenza, C. (2016). Numerical activities and information learned at home link to the exact numeracy skills in 5-6 years-old children. Frontiers in Psychology, 7, 94.

    Article  Google Scholar 

  • Benoit, L., Lehalle, H., Molina, M., Tijus, C., & Jouen, F. (2013). Young children’s mapping between arrays, number words, and digits. Cognition, 129(1), 95–101.

    Article  Google Scholar 

  • Beran, M. J., Perdue, B. M., & Evans, T. A. (2015). Monkey mathematical abilities. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 237–257). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 32–44.

    Article  Google Scholar 

  • Butterworth, B. (1999). The mathematical brain. London, UK: Macmillan.

    Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(1), 3–18.

    Article  Google Scholar 

  • Chan, W. W. L., & Wong, T. T. Y. (2016). The underlying number-space mapping among kindergarteners and its relation with early numerical abilities. Journal of Experimental Child Psychology, 148, 35–50.

    Article  Google Scholar 

  • Chodura, S., Kuhn, J.-T., & Holling, H. (2015). Interventions for children with mathematical difficulties: A meta-analysis. Zeitschrift für Psychologie, 223(2), 129–144.

    Article  Google Scholar 

  • Clark, C. A. C., Sheffield, T. D., Wiebe, S. A., & Espy, K. A. (2013). Longitudinal associations between executive control and developing mathematical competence in preschool boys and girls. Child Development, 84(2), 662–677.

    Article  Google Scholar 

  • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.

    Article  Google Scholar 

  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469–479.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1–42.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. How the mind creates mathematics. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.

    Article  Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83–120.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398.

    Article  Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487–506.

    Article  Google Scholar 

  • Donlan, C., Cowan, R., Newton, E. J., & Lloyd, D. (2007). The role of language in mathematical development: Evidence from children with specific language impairments. Cognition, 103(1), 23–33.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press.

    Book  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    Article  Google Scholar 

  • Froyen, D., Van Atteveldt, N., Bonte, M., & Blomert, L. (2008). Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neuroscience Letters, 430(1), 23–28.

    Article  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.

    Article  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gibson, L. C., & Maurer, D. (2016). Development of SNARC and distance effects and their relation to mathematical and visuospatial abilities. Journal of Experimental Child Psychology, 150, 301–313.

    Article  Google Scholar 

  • Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104–122.

    Article  Google Scholar 

  • Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2014). Language affects symbolic arithmetic in children: The case of number word inversion. Journal of Experimental Child Psychology, 119, 17–25.

    Article  Google Scholar 

  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.

    Article  Google Scholar 

  • Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.

    Book  Google Scholar 

  • Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395.

    Article  Google Scholar 

  • Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number comparison. Developmental Science, 11(5), 644–649.

    Article  Google Scholar 

  • Hurst, M., Anderson, U., & Cordes, S. (2017). Mapping among number words, numerals, and nonsymbolic quantities in preschoolers. Journal of Cognition and Development, 18(1), 41–62.

    Article  Google Scholar 

  • Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360–371.

    Article  Google Scholar 

  • Imbo, I., Vanden Bulcke, C., De Brauwer, J., & Fias, W. (2014). Sixty-four or four-and-sixty? The influence of language and working memory on children’s number transcoding. Frontiers in Psychology, 5, 313.

    Article  Google Scholar 

  • Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124(9), 1701–1707.

    Article  Google Scholar 

  • Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.

    Article  Google Scholar 

  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103–119.

    Article  Google Scholar 

  • Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60–68.

    Article  Google Scholar 

  • Karolis, V., & Butterworth, B. (2016). What counts in estimation? The nature of the preverbal system. Progress in Brain Research, 227, 29–51 Amsterdam: Elsevier.

    Article  Google Scholar 

  • Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763–787.

    Article  Google Scholar 

  • Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: A functional MRI study. Behavioral and Brain Functions, 2, 31.

    Google Scholar 

  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills-a longitudinal study. Frontiers in Psychology, 4, 459.

    Article  Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99–125.

    Article  Google Scholar 

  • Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), 546–565.

    Article  Google Scholar 

  • Le Corre, M., & Carey, S. (2007). Conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438.

    Article  Google Scholar 

  • Le Corre, M., Van de Walle, G., Brannon, E. M., & Carey, S. (2006). Re-visiting the competence/performance debate in the acquisition of the counting principles. Cognitive Psychology, 52(2), 130–169.

    Article  Google Scholar 

  • Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number concepts. Trends in Cognitive Sciences, 12(6), 213–218.

    Article  Google Scholar 

  • Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900–906.

    Article  Google Scholar 

  • Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping between number words and the approximate number system predicts children’s formal math abilities. Journal of Experimental Child Psychology, 150, 207–226.

    Article  Google Scholar 

  • Lipton, J. S., & Spelke, E. S. (2004). Discrimination of large and small numerosities by human infants. Infancy, 5(3), 271–290.

    Article  Google Scholar 

  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.

    Article  Google Scholar 

  • Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H.-C. (2009). Basic number processing deficits in developmental dyscalculia: Evidence from eye-tracking. Cognitive Development, 24(4), 371–386.

    Article  Google Scholar 

  • Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H.-C. (2011). Early place-value understanding as a precursor for later arithmetic performance–a longitudinal study on numerical development. Research in Developmental Disabilities, 32(5), 1837–1851.

    Article  Google Scholar 

  • Moeller, K., Zuber, J., Olsen, N., Nuerk, H. C., & Willmes, K. (2015). Intransparent German number words complicate transcoding – a translingual comparison with Japanese. Frontiers in Psychology, 6, 740.

    Article  Google Scholar 

  • Moore, A. M., Rudig, N. O., & Ashcraft, M. H. (2015). Affect, motivation, working memory, and mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 933–952). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Moura, R., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., et al. (2013). Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology, 116(3), 707–727.

    Article  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520.

    Article  Google Scholar 

  • Mussolin, C., de Volder, A., Grandin, C., Schlögel, X., Nassogne, M.-C., & Noël, M.-P. (2009). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874.

    Article  Google Scholar 

  • Mussolin, C., Nys, J., Leybaert, J., & Content, A. (2016). How approximate and exact number skills are related to each other across development: A review. Developmental Review, 39, 1–15.

    Article  Google Scholar 

  • Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 165.

    Google Scholar 

  • Nuerk, H.-C., Kaufmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the mental number line: More, less, or never holistic with increasing age? Developmental Psychology, 40(6), 1199–1211.

    Article  Google Scholar 

  • Odic, D., Le Corre, M., & Halberda, J. (2015). Children’s mappings between number words and the approximate number system. Cognition, 138, 102–121.

    Article  Google Scholar 

  • Pixner, S., Moeller, K., Hermanova, V., Nuerk, H. C., & Kaufmann, L. (2011). Whorf reloaded: Language effects on nonverbal number processing in first grade-a trilingual study. Journal of Experimental Child Psychology, 108(2), 371–382.

    Article  Google Scholar 

  • Pixner, S., Moeller, K., Zuber, J., & Nuerk, H.-C. (2009). Decomposed but parallel processing of two-digit numbers in 1st graders. The Open Psychology Journal, 2, 40–48.

    Article  Google Scholar 

  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043.

    Article  Google Scholar 

  • Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141(4), 649–666.

    Article  Google Scholar 

  • Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39(1), 417–422.

    Article  Google Scholar 

  • Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395.

    Article  Google Scholar 

  • Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854–867.

    Article  Google Scholar 

  • Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92.

    Article  Google Scholar 

  • Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51.

    Google Scholar 

  • Schleger, F., Landerl, K., Muenssinger, J., Draganova, R., Reinl, M., Kiefer-Schmidt, I., et al. (2014). Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates. Developmental Neuropsychology, 39(4), 316–329.

    Article  Google Scholar 

  • Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291.

    Article  Google Scholar 

  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., et al. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.

    Article  Google Scholar 

  • Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630–633.

    Article  Google Scholar 

  • Szűcs, D., & Myers, T. (2017). A critical analysis of design, facts, bias and inference in the approximate number system training literature: A systematic review. Trends in Neuroscience and Education, 6, 187–203.

    Article  Google Scholar 

  • Vetter, P., Butterworth, B., & Bahrami, B. (2011). A candidate for the attentional bottleneck: Set-size specific modulation of right TPJ during attentive enumeration. Journal of Cognitive Neuroscience, 23(3), 728–736.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Landerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landerl, K. (2019). Neurocognitive Perspective on Numerical Development. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97148-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97147-6

  • Online ISBN: 978-3-319-97148-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics