Skip to main content

Mathematical Learning and Its Difficulties in the United States: Current Issues in Screening and Intervention

  • Chapter
  • First Online:
International Handbook of Mathematical Learning Difficulties

Abstract

Over the course of the past decade, the field of mathematics learning disabilities (MLD) in the United States has evolved significantly. This chapter highlights key contributions that have affected screening and intervention in the United States in two crucial areas of mathematics education: core number competencies in the early grades and fractions in the intermediate grades. We discuss studies that identify powerful predictors of and influences on MLD for both of these areas and detail the long-term impact that failure to acquire knowledge in these areas may have on mathematical development. We also discuss validated screeners for detection of potential difficulties with whole numbers and fractions, respectively. Finally, we describe results from recent intervention studies indicating that these skills can be improved in many children with or at risk for MLD. The contributions represent findings that are influencing educational practice in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibali, M. W., Spencer, R. C., Knox, L., & Kita, S. (2011). Spontaneous gestures influence strategy choices in problem solving. Psychological Science, 22(9), 1138–1114. https://doi.org/10.1177/0956797611417722

    Article  Google Scholar 

  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113, 447–445. https://doi.org/10.1016/j.jecp.2012.06.004

    Article  Google Scholar 

  • Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal for Research in Mathematics Education, 18(2), 141–157.

    Article  Google Scholar 

  • Baroody, A. J., Eiland, M., & Thompson, B. (2009). Fostering at-risk preschoolers’ number sense. Early Education and Development, 20, 80–128.

    Article  Google Scholar 

  • Baroody, A. J., Lai, M.-L., & Mix, K. S. (2006). The development of young children’s early number and operation sense and its implications for early childhood education. In B. Spodek & O. Saracho (Eds.), Handbook of research on the education of young children (pp. 187–221). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Berch, D. B., & Mazzocco, M. M. (2007). Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities. Baltimore, MD: Paul H. Brookes Pub. Co.

    Google Scholar 

  • Bottge, B. A., Ma, X., Gassaway, L., Toland, M., Butler, M., & Cho, S. J. (2014). Effects of blended instructional models on math performance. Exceptional Children, 80(4), 423–437.

    Article  Google Scholar 

  • Carpenter, T. P., Fennema, E., & Romberg, T. A. (Eds.). (2012). Rational numbers: An integration of research. New York, NY: Routledge.

    Google Scholar 

  • Case, R., & Griffin, S. (1990). Child cognitive development: The role of central conceptual structures in the development of scientific and social thoughts. In C. A. Hauert (Ed.), Advances in psychology-developmental psychology: Cognitive, perception-motor, and neurological perspectives. Amsterdam: North Holland.

    Google Scholar 

  • Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61(1–2, Serial No. 246), i.

    Article  Google Scholar 

  • Clarke, B., Baker, S. K., Smolkowski, K., & Chard, D. (2008). An analysis of early numeracy curriculum-based measurement: Examining the role of growth in student outcomes. Remedial and Special Education, 29(1), 46–57.

    Article  Google Scholar 

  • Clarke, B., Doabler, C., Smolkowski, K., Kurtz Nelson, E., Fien, H., Baker, S. K., et al. (2016). Testing the immediate and long-term efficacy of a Tier 2 kindergarten mathematics intervention. Journal of Research on Educational Effectiveness, 9(4), 607–634.

    Article  Google Scholar 

  • Clements, D. H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on the Building Blocks project. Journal for Research in Mathematics Education, 38, 136–163.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Education Research Journal, 45(2), 443–494.

    Article  Google Scholar 

  • Council of Chief State School Officers & National Governors Association Center for Best Practices. (2010). Common core state standards for mathematics. Common Core State Standards Initiative. http://www.corestandards.org/Math/. Accessed 25 Jan 2017.

  • Dobbs, J., Doctoroff, G. L., & Fisher, P. H. (2003). The “math is everywhere” preschool mathematics curriculum. Teaching Children Mathematics, 10(1), 20–22.

    Google Scholar 

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.

    Article  Google Scholar 

  • Dyson, N., Rodrigues, J., Barbieri, C, Rinne, L. & Jordan, N. C (in press). A Fraction Sense Intervention for Students with or at Risk for Mathematics Difficulties. Remedial and Special Education

    Google Scholar 

  • Dyson, N. I., Jordan, N. C., & Glutting, J. (2011). A number sense intervention for kindergartners at risk for math difficulties. Journal of Learning Disabilities, 46(2), 166–181.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    Article  Google Scholar 

  • Frye, D., Baroody, A., Burchinal, M., Carver, S. M., Jordan, N. C., & McDowell, J. (2013). Teaching math to young children: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance (NCEE), Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Powell, S. R., Seethaler, P. M., Cirino, P. T., & Fletcher, J. M. (2008). Intensive intervention for students with mathematics disabilities: Seven principles of effective practice. Learning Disability Quarterly, 31(2), 79–92.

    Article  Google Scholar 

  • Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., et al. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101, 561–576. https://doi.org/10.1037/a0014701

    Article  Google Scholar 

  • Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., et al. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446

    Article  Google Scholar 

  • Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Malone, A. S., Wang, A., et al. (2016). Effects of intervention to improve at-risk fourth graders’ understanding, calculations, and word problems with fractions. The Elementary School Journal, 116(4), 625–651.

    Article  Google Scholar 

  • Fuhs, M. W., Hornburg, C. B., & McNeil, N. M. (2016). Specific early number skills mediate the association between inhibitory control and mathematics achievement. Developmental Psychology, 52, 1217–1235.

    Article  Google Scholar 

  • Geary DC, Bailey DH, Hoard MK. (2009)Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The Number Sets Test. Journal of Psychoeducational Assessment, 27(3), 265–279.

    Article  Google Scholar 

  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359.

    Article  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., et al. (2009). Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary and middle schools (NCEE 2009–4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  • Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screening in mathematics for students in the primary grades. Exceptional Children, 78, 423–445.

    Article  Google Scholar 

  • Gersten, R., & Jordan, N. (2016). Introduction to the special series on fraction learning. Journal of Learning Disabilities, 1, 1–2.

    Google Scholar 

  • Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293–304.

    Article  Google Scholar 

  • Griffin, S. (2002). The development of math competence in the preschool and early school years: Cognitive foundations and instructional strategies. In J. M. Roher (Ed.), Mathematical cognition. In series: Current perspectives on cognition, learning, and instruction (pp. 1–32). Greenwich, CT: Information Age Publishing, Inc.

    Google Scholar 

  • Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early Childhood Research Quarterly, 19, 173–180.

    Article  Google Scholar 

  • Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L. S., Gersten, R., et al. (2015). Predictors of fraction knowledge in sixth grade. Cognitive Development, 35, 34–49.

    Article  Google Scholar 

  • Hansen, N., Jordan, N. C., & Rodrigues, J. (2017). Identifying persistent learning difficulties in fractions: A longitudinal study of student growth from third through sixth grade. Contemporary Educational Psychology, 50(c), 49–59. https://doi.org/10.1016/j.cedpsych.2015.11.002

    Article  Google Scholar 

  • Huttenlocher, J., Jordan, N., & Levine, S. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 12(3), 284–296.

    Article  Google Scholar 

  • Jordan, N. C., & Dyson, N. (2016). In A. Henik (Ed.)., Continuous issues in numerical cognition: How many or how much? Catching math problems early: Findings from the number sense intervention project (pp. 60–79). New York, NY: Elsevier.

    Google Scholar 

  • Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building kindergartners’ number sense: A randomized controlled study. Journal of Educational Psychology, 104(3), 647–660. https://doi.org/10.1037/a0029018

    Article  Google Scholar 

  • Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82–88.

    Article  Google Scholar 

  • Jordan, N. C., Kaplan. D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662–668.

    Article  Google Scholar 

  • Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research and Practice, 22(1), 36–46.

    Article  Google Scholar 

  • Jordan, N. C., Kaplan, D., Olah, L., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153–175.

    Article  Google Scholar 

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number sense and later mathematics outcomes. Developmental Psychology, 45, 850–867.

    Article  Google Scholar 

  • Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15, 60–68.

    Article  Google Scholar 

  • Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N. (2016). The Delaware longitudinal study of fraction learning: Implications for helping children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 621–630. https://doi.org/10.1177/002221941662033

    Article  Google Scholar 

  • Jordan, N. C., Rodrigues, J., Hansen, N., Resnick, I., & Dyson, N. (2017). Fraction development in children: Importance of building numerical magnitude understanding. In D. C. Geary, K. M. Koepke, D. Berch, & R. Ochsendorf (Eds.), Mathematical cognition and learning (Vol. 3, pp. 126–137). New York, NY: Elsevier.

    Google Scholar 

  • Klein, A., Starkey, P., Sarama, J., Clements, D. H., & Iyer, R. (2008). Effects of a pre-kindergarten mathematics intervention: A randomized experiment. Journal of Research on Educational Effectiveness, 1, 155–178.

    Article  Google Scholar 

  • Levine, S. C., Jordan, N., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53(1), 72–103.

    Article  Google Scholar 

  • Lewis, M. R., & Hubbard, E. M. (2015). A neurocognitive model of fractions learning. Talk presented at the annual meeting of the American Educational Research Association, Chicago, IL.

    Google Scholar 

  • Locuniak, M. N., & Jordan, N. C. (2008). Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities, 41(5), 451–459.

    Article  Google Scholar 

  • Malofeeva, E., Day, J., Saco, X., Young, L., & Ciancio, D. (2004). Construction and evaluation of a number sense test with head start children. Journal of Educational Psychology, 96(4), 648–659.

    Article  Google Scholar 

  • Mazzocco, M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research & Practice, 20(3), 142–155.

    Article  Google Scholar 

  • Milgram, J. (2005). The mathematics pre-service teachers need to know. Stanford, CA: Department of Mathematics, Stanford University.

    Google Scholar 

  • National Research Council. (2009). Mathematics learning in early childhood: Paths toward excellence and equity. Washington, DC: The National Academies Press.

    Google Scholar 

  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 27–52. https://doi.org/10.1207/s15326985ep4001_3

    Article  Google Scholar 

  • Organization for Economic Co-operation and Development. (2012). Results from PISA 2012: United States. https://www.oecd.org/unitedstates/PISA-2012-results-US.pdf. Accessed 27 Jul 2017.

  • Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana Survey. Developmental Psychology, 48(1), 123–135.

    Article  Google Scholar 

  • Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., et al. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52(5), 746–757.

    Article  Google Scholar 

  • Rinne, L., Ye, A., & Jordan, N. C. (2017). Development of fraction comparison strategies: A latent transition analysis. Developmental Psychology, 53(4), 713–730.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Jordan, N. C. (2016). Synthesis of IES-funded research on mathematics: 2002–2013 (NCER 2016–2003). Washington, DC: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. This report is available on the Institute website at http://ies.ed.gov/

    Google Scholar 

  • Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852.

    Article  Google Scholar 

  • Robinson, C. S., Menchetti, B. M., & Torgesen, J. K. (2002). Toward a two-factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81–89.

    Article  Google Scholar 

  • Rodrigues, J., Dyson, N., Hansen, N., & Jordan, N. C. (2017). Preparing for algebra by building fraction sense. Teaching Exceptional Children, 49(2), 134–141.

    Article  Google Scholar 

  • Rodrigues, J., Hansen, N., Resnick, I., Dyson, N., Ye, A., & Jordan, N. C. (2016, April). A practical and powerful screener of middle school mathematics difficulties. Paper presented at the meeting of National Council of Teachers of Mathematics (NCTM), San Francisco, CA.

    Google Scholar 

  • Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395.

    Article  Google Scholar 

  • Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology, 36(5), 1227–1238. https://doi.org/10.1037/a0018170

    Article  Google Scholar 

  • Seethaler, P. M., & Fuchs, L. S. (2010). The predictive utility of kindergarten screening for math difficulty. Exceptional Children, 77, 37–59.

    Article  Google Scholar 

  • Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23, 691–697. https://doi.org/10.1177/0956797612440101

    Article  Google Scholar 

  • Siegler, R. S., Fuchs, L., Jordan, N. C., Gersten, R., & Ochsendorf, R. (2015). Center for improving understanding of fractions: A progress report. In S. J. Chinn (Ed.), The Routledge international handbook for mathematical difficulties and dyscalculia (pp. 292–303). London, UK: Routledge.

    Google Scholar 

  • Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8, 144–150. https://doi.org/10.1111/cdep.12077

    Article  Google Scholar 

  • Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200

    Article  Google Scholar 

  • Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296. https://doi.org/10.1016/j.cogpsych.2011.03.001

    Article  Google Scholar 

  • Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19, 99–120. https://doi.org/10.1016/j.ecresq.2004.01.002

    Article  Google Scholar 

  • Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children’s understanding of fractions. Child Development, 85(4), 1461–1476. https://doi.org/10.1111/cdev.12218

    Article  Google Scholar 

  • Woodward, J. (2004). Mathematics education in the United States: Past to present. Journal of Learning Disabilities, 37(1), 16–31.

    Article  Google Scholar 

  • Wu, H. (1999, Fall). Basic skills versus conceptual understanding. In American educator (pp. 1–7). Washington, DC: American Federation of Teachers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy C. Jordan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, N.C., Rinne, L., Hansen, N. (2019). Mathematical Learning and Its Difficulties in the United States: Current Issues in Screening and Intervention. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97148-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97147-6

  • Online ISBN: 978-3-319-97148-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics